Convergent tree-reweighted message passing for energy minimization

Vladimir Kolmogorov
Microsoft Research
Cambridge, UK
vnk@microsoft.com

Abstract

Tree-reweighted max-product message pass-
ing (TRW) is an algorithm for energy mini-
mization introduced recently by Wainwright
et al. [7]. It shares some similarities with
Pearl’s loopy belief propagation. TRW was
inspired by a problem of maximizing a lower
bound on the energy. However, the algorithm
is not guaranteed to increase this bound - it
may actually go down. In addition, TRW
does not always converge. We develop a mod-
ification of this algorithm which we call se-
quential tree-reweighted message passing. Its
main property is that the bound is guaran-
teed not to decrease. We also give a weak tree
agreement condition which characterizes local
maxima of the bound with respect to TRW
algorithms. We prove that our algorithm has
a limit point that achieves weak tree agree-
ment. Experimental results demonstrate
that on certain synthetic and real problems
our algorithm outperforms both the ordinary
belief propagation and tree-reweighted algo-
rithm [7].

1 Introduction

Sum-product algorithms Pearl’s loopy belief
propagation (“sum-product BP”) is a popular algo-
rithm for inference in Bayesian networks. If the net-
work is a tree, then it converges in a finite number
of iterations, and the solution gives exact marginals.
However, if the network contains loops then conver-
gence is not guaranteed.

Fixed points of BP have been shown to correspond to
extrema of the so-called Bethe free energy [12]. This
motivated algorithms for direct minimization of the
Bethe free energy, such as CCCP [13] and UPS [5].

They are guaranteed to converge; however, the com-
putation cost is often higher than the cost of BP.

Several researchers proposed alternatives to the Bethe
free energy [6, 9, 11, 3]. Functionals used in [6, 9] are
convex upper bounds on the log partition function,
and functionals in [3] are convex upper bounds on the
Bethe free energy. In order to minimize these func-
tionals, belief propagation algorithm was modified in
such a way that its fixed points correspond to extrema
of the functional.

The algorithm proposed in [9] is called tree-reweighted
message passing (TRW). Interestingly, its fixed point
achieves the global minimum of the upper bound. Un-
fortunately, as in the case of ordinary BP, convergence
is not guaranteed.

Max-product algorithms Closely related to sum-
product are “max-product” (or “min-sum”) BP algo-
rithms. Their goal is to find a configuration with the
maximum a posteriori (MAP) probability, or a con-
figuration with the smallest energy. Generally, max-
product algorithms can be obtained from sum-product
versions in the zero temperature limit. There are
caveats, however; for example, it is not known whether
fixed points of max-product BP correspond to extrema
of some functional.

In this paper we focus on the max-product version of
tree-reweighted algorithm [7]. In fact, two different
TRW algorithms are developed in [7]. They are in-
spired by the problem of maximizing a concave lower
bound on the energy. These algorithms have the fol-
lowing property: if their fixed point satisfies a certain
condition (“tree agreement”) then it is guaranteed to
give a MAP solution (i.e. a global minimum of the

energy).

However, TRW algorithms in [7] cannot be viewed as
algorithms for direct maximization of the bound. In-
deed, in our experiments we observed that sometimes
they decrease it. Also, the algorithms do not always
converge; when it happens, the value of the bound of-

ten goes into a loop.

Our main contribution is as follows: we show how to
modify TRW algorithms so that the value of the bound
is guaranteed not to decrease. Thus, we are guaran-
teed to find at least a “local” maximum of the bound.
The word “local” is in quotes since for concave func-
tions all local maxima are global, if the standard met-
ric space topology is used. Here we use a weaker topol-
ogy: our maxima are local with respect to the TRW
algorithms. We formulate the weak tree agreement con-
dition (WTA) which gives a precise characterization of
such maxima. We prove that our algorithm has a sub-
sequence converging to a vector satisfying WTA.

An interesting question is whether WTA always gives
a global maximum of the bound. We show that this
is not the case by providing a counterexample. This
is a difference between sum-product and max-product
cases.

TRW algorithms require some choice of trees cover-
ing the graph. If the trees have a special structure
(namely, chains which are monotonic with respect to
some ordering on the graph) then our algorithm re-
duces to the TRW message-passing algorithm of Wain-
wright et al. [7], but with a significant distinction: we
update messages in a specific sequential order rather
than in parallel. In the context of ordinary BP it
is a well-known experimental fact that sequential up-
dates are superior to parallel updates, although con-
vergence is still not guaranteed. We give a theoretical
justification of sequential updates in the case of tree-
reweighted algorithms.

Our experimental results include both synthetic and
real problems. In particular, we consider an energy
function arising in the stereo matching problem [1].
We demonstrate that our algorithm outperforms both
the ordinary BP and the TRW algorithms of Wain-
wright et al. [7]. Moreover, we obtain a slightly lower
energy than the expansion move method [1], which is
generally considered to be the most accurate minimiza-
tion technique for such energy functions.

Outline The paper is organized as follows. In sec-
tion 2 we introduce our notation and review some re-
sults from [7], in particular the lower bound on the
energy function via convex combination of trees and
duality result. Our new tree-reweighted algorithm and
its analysis are given in section 3. Experimental results
are described in section 4. Finally, we give conclusions
in section 5.

2 Notation and background

In this paper we closely follow the notation used in [7].
However, instead of maximizing posterior probability

we minimize an energy function. Therefore, we replace
“min” with “max”, “inf” with “sup” and vice versa.

Let G = (V, &) be an undirected graph with the set of
vertices V and the set of edges £. For each s € V, let
x5 be a variable taking values in some discrete space
Xs. By concatenating the variables at each node, we
obtain a vector x with n = |V| elements. This vector
takes values in the space X = A} X Ap X ... X Aj.
Unless noted otherwise, symbols s and ¢ will denote
nodes in V, (s,t) - edge in &, j and k - variables in X
and A%, respectively.

A potential function is a mapping ¢ : X — R
We can also consider a family of potential functions
{ba | @ € T} where 7 is some index set. This family
defines a vector-valued mapping ¢ : X — R?. Associ-
ated with ¢ is a real-valued vector 8 = {6, |a € T},
which we call an energy parameter vector'. This vector
defines an energy function E(-|6) : X — R as follows:

E(x[6) = (0,0(x) = Y _ fada(x) (1)

a€l

where (-, -) is the ordinary Euclidean product in R?.

We will use the collection of potential functions called
the canonical overcomplete representation [8, 10]. Tt is
defined as follows:

{0j(w5)} U {0;(25)0k ()} U{beonst (%)}

where 0;(z5) is an indicator function - it is equal to
one if z; = j, and zero otherwise. Function ¢copnst(X)
equals to 1 for all arguments. The index set for this
representation is

T = {(s:4)} U {(st; jk)} U {const}

Note that (st; jk) = (ts; kj), 50 0,k and 85,1, are the
same element.

Sometimes it will be convenient to denote elements 6,
and Oy jx, as 85(7) and 64(4, k), respectively. We will
also use notation 65 to denote a vector of size |Xs| and
s to denote a vector of size | Xy x Ay|.

Note that energy function 1 corresponding to this rep-
resentation can be written as a sum of unary terms
corresponding to nodes in V, and pairwise terms cor-
responding to edges in &:

E(X | 9) = aconst + Zes(fs) + Z ast(xs,xt)

sEV (s,t)€E

Let us introduce another notation which we will
use extensively throughout the paper. Functions
S, D, Pojr - RT - R give information about the

'In [8, 10] parameter 6 is called an ezponential parame-
ter vector. We use a different name to emphasize the fact
that our @ is the negative of 6 used in [8, 10].

minimum values of the energy under different con-
straints:

P(0) = mingey E(x|6)
®5;(0) = minkexz,=j E(x|0)
Pst;jk(0) = minkexz,=j,a,=k E(x|0)

Values ®,,;(0) and @y, ;1 (6) are called min-marginals
for node s and edge (s,t), respectively.

2.1 Reparameterization and max-product
belief propagation

If two parameter vectors # and 6’ define the same en-
ergy function (i.e. E(x|0') = E(x]6) for all x € X)
then 6’ is called a reparameterization of 6 [8, 10]. We
will write this as ' = 6. Note that this condition
does not necessarily imply that 8’ = 6 since there are
various linear relations among potential functions ¢,.

Reparameterization provides an alternative tool for
the analysis of belief propagation algorithm. Recall
that a basic operation of BP is passing a message from
node s to node t. As shown in [8, 10], this operation
can be implemented without any messages: it is equiv-
alent to a certain reparameterization of vectors 0, and
0, for edge (s,t) and node t, respectively. We will say
that € is in a normal form if it is a fixed point of BP.

If graph G is a tree, then values 6,,; and 6.;, for
vector # in a normal form have a particularly simple
interpretation [10] - they correspond to min-marginals
(up to a constant):

(}S?j (0) = as;j
q>5t§]'k (0) = Os;j + est;jk + at;k

where consts and constg; are constants independent of
j and k.

+ consty
+ constg (2)

2.2 Lower bound on the energy function

In this section we review the bound proposed in [7].
In order to describe it, we need to introduce some no-
tation.

Let 7 be a collection of trees in graph G and p”, T € T
be some distribution on 7. Throughout the paper we
assume that each tree has a non-zero probability and
each edge in £ is covered by at least one tree.

For a given tree T = (VT,£T) we define a set
T = {(s;5) | s € VTYU{(st; k) | (s,t) € ET}U{const}

corresponding to those indexes associated with vertices
and edges in the tree.

To each tree T' € T, we associate an energy parameter
67 that must respect the structure of 7. More pre-
cisely, the parameter #7 must belong to the following

linear constraint set:
AT =0T e R?|6T =0 Va e T\T7}

By concatenating all of the tree vectors, we form a
larger vector @ = {#7 | T € T}, which is an element of
RXIT1. Vector @ must belong to the constraint set

A={0 e R”TI 9T ¢ AT forall T € T}

Consider function ®, : A — R defined as follows:
,(0) = _p"@(0") =D _p" min (67, p(x))
T T

[7] shows that if Y, pT07 = 0 then ®,(0) is a lower
bound on the optimal value of the energy for vector
6 (this follows from Jensen’s inequality). To get the
tightest bound we can consider the following maxi-
mization problem:

max

3,(0 3
R T »(0) (3)

Interestingly, the optimal value of this problem does
not depend on the choice of trees [7]. A proof of this
fact can be summarized as follows. ®, is a concave
function of @; moreover, the constraints of problem 3
are linear in @. Thus, we can consider its Lagrangian
dual. This dual problem turns out to be a certain lin-
ear programming relaxation of the original minimiza-
tion problem, and does not involve any trees?.

3 New tree-reweighted message
passing algorithm

Maximization problem 3 inspired two algorithms in [7]
- tree-reweighted message passing with edge based up-
dates (TRW-E) and with tree based updates (TRW-
T). However, neither algorithm maintains constraint
> pT8T = 0 of problem 3. Indeed, they perform
reparameterizations of the original parameter vector,
so this equality may become violated®. Let us replace
it with the constraint 3. pT67 = §. Thus, we are now
interested in the following maximization problem:

©,(0) (4)

max _
0cA,Y ; pTOT=0

The following lemma justifies this formulation.

Lemma 3.1. The optimal value of problem 4 equals
to the optimal value of problem 3.

2[7] formulated the duality theorem for the case when
trees in 7 are spanning. However, their proof never uses
this assumption. In this paper we do not assume that trees
are spanning.

*Note that lemmas 5 and 11 in [7] seem to contain a
mistake. Lemma 11, for example, says that TRW-T algo-
rithm maintains the property > . pT6T = f. However, the
proof does not take into account reparameterization step.

Proof. See [4]. The proof involves showing that any
reparameterization can be expressed via messages. It
is omitted due to space limitations. O

As shown in [7], TRW-E and TRW-T algorithms main-
tain the constraint of problem 4. Unfortunately, they
do not guarantee that the objective function ®, mono-
tonically increases - in our experiments we have ob-
served that sometimes it goes down. In fact, when the
algorithms failed to converge the value of ®,(6) often
had gone into a loop. Next we design a new algorithm
with the property that ®, never decreases.

Our algorithm is shown in Fig. 1. Unlike TRW-E and
TRW-T algorithms which use parallel updates, we up-
date vectors {#7} sequentially. Therefore, we call our
algorithm “sequential tree-reweighted message pass-

ing” (TRW-S).

Reparameterization step 1(a) can be implemented in
many different ways. One possibility is to convert vec-
tors 87 to normal forms my running the ordinary max-
product BP*. However, this would be very expensive if
trees are large. A more efficient technique is discussed
in section 3.3.

3.1 Weak tree agreement

The algorithm in Fig. 1 does not specify what the stop-
ping criterion is. In this section we address this is-
sue by giving weak tree agreement condition (WTA).
Later we will show that it characterizes local maxima
of the algorithm with respect to function ®,. More
precisely, we will prove that the algorithm has a sub-
sequence converging to a vector satisfying WTA con-
dition. Moreover, if a vector satisfies these conditions,
then the algorithm will not make any progress, i.e. it
will not increase function @,,.

In order to define this condition, it is convenient to
introduce some notation. Let OPTT (§7) be the set of
optimal configurations for parameter 7. Let OPT()
be the collection {OPTT(8T) | T € T} of the sets of
optimal configurations for vectors 7. It belongs to
the set (2|71 = 2% x ... x 2% (|T| times). For two
collections S, S € (2%)/71 we will write S ¢ S if ST ¢
ST for any tree T'.

Consider some collection of sets of configurations S =
{ST} € (2%)IT]. We say that S is consistent if it satis-
fies the following three conditions:

(a) For any tree T set ST is non-empty.

“With this scheme a connection to TRW-T algorithm
is more apparent. Basically, TRW-T iterates between two
phases: (a) running max-product BP for all trees, and (b)
performing averaging operation for all nodes and edges.

0. Initialize 0 so that @ € A and Y .. pT07 = 0.

1. Select some order for nodes and edges in VU E.
For each element w € VUE find all trees T, C T
containing w. If there is more than one tree, then
do the following:

(a) For all trees T € T, reparameterize 67 such
that values t‘)TJ (if w = s is a node) or BT

Gst ik +0t i (if w = (s,t) is an edge) give correct
min- marglnals for tree T" as in formula 2.

(b) “Averaging” operation:
If w=sis anodein V then

p% ZTGTS pT9§"
- Set 07 := 6, for trees T € T,
If w=(s,t) is an edge in £ then

- Compute 6, =

- Compute
ﬂst;jk - Z 0T + 0st sk + az:k)
Pst TETat
- Set 07, 07, 0T for trees T € Ty so that

T T _ 5 .
0 + ast gk + at;k = Vst;jk

2. Check whether a stopping criterion is satisfied;
if yes, terminate, otherwise go to step 1.

Figure 1: Sequential tree-reweighted algorithm
(TRW-S).

(b) If node s is contained in trees 7" and 7", then for
any configuration x” € S7 there exists configura-
tion xI° € ST which agrees with x" on node s,

. ’
1.e. I'T I'T

(c) If edge (s,t) is contained in trees T and T", then
for any conﬁguration xT € ST there exists config-
uration xT € ST’ which agrees with x” on nodes
sand t,ie. 2T =27 ol =T

Now we can define WTA condition.

Definition 3.2. Vector @ = {#7} € A is said to sat-
isfy the weak tree agreement condition if there exists
collection S C OPT(0) which is consistent.

Note that it can be viewed as a generalization of the
tree agreement condition introduced in [7]: vectors sat-
isfying tree agreement also satisfy WTA condition.

Also note that WTA condition is different from the
fized point condition of TRW algorithms. The latter
means that any step of the algorithm does not change
vector 0. This in turn implies that all vectors 7 are
in a normal form and 67 = 87" for every element w €
Y U & and for every pair of trees T,T" € T,. It is easy

to see that every fixed point of TRW satisfies WTA
condition, but not the other way around.

3.2 Analysis of the algorithm

First we show that similarly to TRW-T algorithm,
TRW-S maintains the constraint of problem 4.

Lemma 3.3. TRW-S algorithm performs reparame-
terization of the original parameter vector 0, ie it
maintains the property > . pT 01 = 0.

This lemma follows directly from the algorithm’s con-
struction; see [4] for details.

Next we analyze the behaviour of objective function @,
during the algorithm. To be specific, we assume for
the rest of this section that after reparameterization
step 1(a) we have min; {GSTJ} =0 (if w = s is a node)
or minj {67, + 607, ;. + 60/} = 0 (if w = (s,¢) is an
edge). This assumption is not essential, however; the
behaviour of the algorithm will be the same for any
other normalization.

Theorem 3.4. (a) After any number of steps func-
tions ® and ®, do not decrease.

(b) If vector @ does not satisfy WTA condition then
after a finite number of steps ®, will increase.

(¢) If vector @ satisfies WTA condition with collection
S then after any number of steps it will still satisfy
WTA with the same collection S. Function ®, will
not change.

Proof. Due to space limitations we prove only part (a)
for the case of averaging operation for node s. The rest
of the proof is in [4].

Suppose that this operation transforms vectors 67 to
vectors 87, We need to show that ®(#7) > ®(7)
for any tree T' € T,. This will imply Y, p"®(67) >

> p"®(67).
Because of our normalization assumption we have
T . T . T
IES min P, (0") = min {05.;} + consts = const;

where consts is the constant in formula 2. Plugging
this into formula 2 we get ®,.;(67) = ®(6") + 0.

Vectors 87 and 67 agree on all nodes and edges other
than node s. Thus, they have the same optimal con-
figuration x? with the constraint 27 = j. We can write

O,;(07) =E(x? |67) = E(x? |07) — 0L, + 0L, =
= ®,,;(07) — 0L, + 0L, = 2(6") + 0L,
ATy _ AT _ T . (jT
®(07) = min &,;(67) = ®(97) + min {6}
We have §1 > 0; inspecting update rule of step 1(b) we

conclude that §7 > 0 as well. Therefore, the minimum
on the RHS is non-negative, so ®(#7) > ®(¢7). O

As an immediate consequence of theorem 3.4(b) we get
the following result:

Corollary 3.5. If vector @ mazximizes problem 4 then
0 satisfies WTA condition.

Unfortunately, the converse is not necessarily true as
example in [4] demonstrates.

Finally, we give the convergence theorem. A proof is
given in [4]; here we omit it due to space limitations.

Theorem 3.6. Let {689}, be an infinite sequence of
vectors obtained by applying step 1 of TRW-S algo-
rithm. Then there exists a subsequence {6%™)},,
such that

(a) It has reparameterization {éi(m)}m (i.e. g €
A and (010" T = (1N for any m, T) that con-

Ai(m)

verges to some vector 8 € A : {6} "5 9*.

(b) Sequence {‘I>p(0(i))}i converges to ®,(0").
(c) Vector 0" satisfies WTA condition.

3.3 TRW-S algorithm for a graph with
monotonic chains

In this section we focus on step 1(a) - reparameteriz-
ing vector 7. For simplicity, consider the case when
w = s is a node. In general, a complete forward pass
of the ordinary max-product BP is needed for trees
T € T - sending messages from leaves to node s which
we treat as a root®. However, this would make the al-
gorithm very inefficient if trees are large. Fortunately,
a complete forward pass is not always necessary.

The key idea is that the averaging operation does not
invalidate messages in trees T' € T, oriented towards
node s%. Therefore, we can “reuse” messages passed
in previous steps, i.e. not pass them again. This ob-
servation allows us to reduce the number of messages
drastically if trees and the order of averaging opera-
tions are chosen in a particular way. Specifically, we
require trees to be chains which are monotonic with
respect to some ordering on the graph:

Definition 3.7. Graph G and chains T € T are said
to be monotonic if there exists an ordering of nodes
i(u),u €V such that each chain T satisfies the follow-
ing property: iful, ... :“Z(T) are the consecutive nodes

in the chain, then the sequence i(ui),... ,i(ug(T)) is
monotonic.

®Note that the backward pass (sending messages from
the root to leaves) is not needed. It would convert vectors
67 to normal forms but would not change vectors 67 .

®Recall that our algorithm is message-free. The phrase
“message is valid for directed edge (s — t) in tree 7” means
that sending a message from node s to node ¢ as discussed
in section 2.1 would not modify vector 7.

0. Initialize @ so that @ € A and > . pT67 = 0.

1. For nodes t € V do the following operations in
the order of increasing i(t):

(a) For every edge (s,t) € £ with i(s) < i(t) do
the following:

- If T4 contains more than one chain then per-
form the averaging operation for edge (s,t).

- For chains in T pass a message from s to t.
(b) Perform the averaging operation for node ¢.
2. Reverse the ordering: set i(u) := |V| + 1 — i(u).

3. Check whether a stopping criterion is satisfied;
if yes, terminate, otherwise go to step 1.

Figure 2: TRW-S algorithm for a graph with
monotonic chains.

As an example, we could choose 7 to be the set of
edges; it is easy to see that they are monotonic for
any ordering of nodes. However, it might be advan-
tageous to choose longer trees since the information
might propagate faster through the graph.

The algorithm for a graph with monotonic chains is
shown in Fig. 2. Its properties are summarized by the
following lemma whose proof is given in [4].

Lemma 3.8. Starting with the second pass, the fol-
lowing properties hold during step 1 for node t:

(a) For each edge (u,v) € & with i(u) < i(v) < i(t)
messages (u — v) in chains T € Ty are valid.
This property also holds for node v = t in the
beginning and in the end of step 1(b).

(b) For each edge (u,v) € € with i(u) > i(t) messages
(v = u) in chains T € Ty, are valid.

In addition, property (a) holds during the first pass of
the algorithm.

Thus, the algorithm in Fig. 2 is a special case of the
algorithm in Fig. 1, if we treat the first pass of former
algorithm as part of initialization of the latter one.

Efficient implementation The algorithm in Fig. 2
requires O(|Ts| - |Xs|) storage for node s and O(|Ts| -
|Xs| - |X:|) storage for edge (s,t). However, we can
reduce it to O(|Xs|) and O(|X5| + |X:]), respectively,
using two ideas”. First, it can be seen that the algo-
rithm maintains the following equalities: 67 = 67
for T,T7" € T, and 07, = 07 for T,T" € Ty (as-
suming that they hold after initialization). Second,

"We assume that storage required for vectors f; is neg-

ligible. This holds for many energy functions used in prac-
tice, e.g. for functions with Potts terms.

0. Set all messages to zero.

1. For nodes t € V do the following operation in
the order of increasing i(t):

e For every edge (s,t) € £ with i(s) < i(t) update
message Mg, as follows:

- Compute 0, = pl_sés + Z(u,s)e£ ppLjM“S

- Set Mst;k = minj {(93;]' - Mts;j) + p—itgst;jk}

2. Reverse the ordering: set i(u) := |V| + 1 — i(u).

3. Check whether a stopping criterion is satisfied;
if yes, terminate, otherwise go to step 1.

Figure 3: Efficient implementation of the algo-
rithm in Fig. 2 using messages.

reparameterizations #7 can be stored using messages
Mg = {Ms | k € X} for directed edges (s = t) € &,
which correspond to vector @ as follows:

07 = 50+ Xanes 5 Mt

T _ 1
Ostiji = porOstijk — Motzk — Mis;j

The resulting algorithm is shown in Fig. 3. Note that
for many important choices of terms #,; message up-
date in step 1 can be done very efficiently using dis-
tance transforms [2].

The message update rule of our algorithm is very simi-
lar to that of TRW-E algorithm (they would be identi-
cal if trees were spanning). However, TRW-E performs
the updates in parallel, while we do it sequentially. As
a result, we get convergence properties proved earlier.

4 Experimental results

We have compared four algorithms: ordinary max-
product algorithm (BP) and three tree-reweighted al-
gorithms (TRW-E, TRW-T, TRW-S). For TRW-E al-
gorithm we also experimented with the damping pa-
rameter v € (0,1]; as reported in [7], TRW-E con-
verges if sufficiently damped. We tuned this param-
eter for the experiments below. We used rectangular
graphs with 4-neighborhood systems. The trees were
horizontal and vertical chains with uniform probabil-
ity. We treated them as two forests with probabilities
0.5; then we have ps = 1 for nodes s and ps = 0.5 for
edges (s,t). We processed nodes in the raster order.

For BP algorithm we implemented a sequential update
scheme whose order is similar to that of TRW-S: we
pass messages from the top left corner to the bottom
right corner and back. We experimented with the par-
allel update scheme and found that it was much slower.

The running time of the algorithms (number of itera-
tions) was measured in terms of the number of passed
messages divided by the number of directed edges in
the graph.

For TRW algorithms we measured two quantities as
functions of time: the value of ®,(0) and the value of
the energy E(x | #). Note that the former is a lower
bound on the optimal value of the energy, and the
latter is an upper bound. Solution x for vector 8 was
computed as follows: for each node s we determine
label x5 minimizing Y, p? 01 (z;). For BP algorithm,
we can determine only one of these quantities, namely
the value of the energy.

TRW algorithms were deemed to converge if we could
find a consistent collection S = {S”} such that
ExT|6T) — ®(6T) < 1078 for any tree T and config-
uration x” € ST. Note that checking this condition is
expensive. In practice it may be better to use a test
based on the behaviour of function ®,,.

4.1 Synthetically generated problems

We have tested two types of problems: Ising model
with attractive potentials and with mixed potentials.
Single-node potentials were generated as independent
gaussians: 050,051 ~ N(0,(0.25)%). Pairwise poten-
tials were set as follows: O_St;og = ést;ll =0, ést;gl =
Ost:10 = Ast where g was generated as [N(0,1)] for
attractive potentials and as N'(0,1) for mixed poten-
tials. The size of the problem was 20x20. We tested

the algorithms on 100 sample problems.

Attractive potentials First we tested the be-
haviour of TRW-E algorithm with respect to the
damping parameter v. For v = 1, only 40% of the
trials converged; however, for smaller values of « the
algorithm always converged. The smallest number of
iterations was achieved at v = 0.96. We used this
value for the subsequent experiment.

Next we tested convergence rate of the four algorithms.
TRW-S and BP converged in 100% of the cases, and
TRW-T never converged (we observed that it went
into a loop). The average number of iterations un-
til convergence was as follows: 73.1 for TRW-E, 21.8
for TRW-S and 7.1 for BP. Note that it is not very fair
to compare convergence for TRW algorithms and for
BP, since convergence criteria are different. Next test
provides a better comparison.

In this test we measured average values of lower bound
®,(0) and energy F(x|0) as functions of time for the
first 50 iterations. Results are shown in Fig. 4(a,b). In
most cases TRW-E and TRW-S found an optimal so-
lution, and BP found an optimal solution for a smaller
number of cases. TRW-S was decreasing the energy
faster than the other algorithms. Surprisingly, TRW-

200

400 =
TRW-E
200 M = TRW-S
1s0f
0
-200 100
-400)
50}~
-600) -
0 10 20 30 40 5 0 10 20 30 40 50
(a) (b)
x10°
50 BP
4.2 TRW-E
~100 — TRW-S
-150 4
-200 3.8
—250| 3.6
-300 L.
0 50 100 150 200 0 50 100 150 200

Figure 4: Energy plots. Horizontal axis: num-
ber of iterations. Vertical axis, upper curves:
average value of the energy E(x |). Vertical
axis, lower curves for TRW algorithms: aver-
age value of ®,(0). (a) Ising model, attractive
potentials, TRW-T algorithm. (b) Ising model,
attractive potentials, three other algorithms.
(c) Ising model, mixed potentials. (d) Tsukuba
dataset, Potts model.

T algorithm failed completely. Moreover, it demon-
strated similar behaviour for the tests below so it is
not shown.

Mixed potentials The behaviour of TRW-E and
TRW-S algorithms was substantially different from the
previous case. We observed that the smallest value of
the energy was achieved after a small number of it-
erations (5-10), and after that the energy increased.
TRW-E with damping and TRW-S always converged,
however the value of the energy at convergence was
larger than in the middle. Moreover, the energy ob-
tained by BP was smaller than the energy of TRW al-
gorithms, despite the fact BP did not converge. This
behaviour is shown in Fig. 4(c). For TRW-E algorithm
we picked empirically v = 0.3.

Poor performance of TRW algorithms for the problem
with mixed potentials needs further investigation.

4.2 Stereo matching problem

We have tested the algorithms on the energy function
arising in the stereo matching problem [1]. The input
is two images taken from different viewpoints, and the
goal is to find a disparity for every pixel in the left im-
age. Similarly to [1], we used Potts interaction model.

For TRW-E algorithm we picked empirically v = 0.95.

Fig. 4(d) shows energy plots for the Tsukuba dataset
used in [1]. Precise numbers are as follows:

alg. number of iterations
4] 16 [64 | 256 [1024
expansion move [1] 719
BP 48479 29815 | 29815 | 29815 (29815
TRW-E 1073357 | 175433 | 17475 | 905 889
-29418.0(-8966.5|-1058.7 | -26.8 | -0.47
TRW-S 30663 10101 2465 463 643

-5496.0 (-1189.0| -92.7 [-0.057| O

Top rows show the value of the energy, bottom rows
for TRW-E and TRW-S - the value of lower bound
®,(0). Note that we subtracted 354453 from all val-
ues - it appears to be the maximum of problem 4.
Using a different initialization for TRW-S algorithm,
we were also able to obtain a configuration with energy
354453+103.

TRW-S algorithm is a clear winner - it decreases the
energy more rapidly than the other algorithms. The
second best is TRW-E algorithm with damping, al-
though in the beginning the energy decreases more
slowly than the energy for BP. Our algorithm obtains
lower energy than BP, and slightly lower energy than
the expansion move algorithm [1].

5 Discussion and conclusions

We have developed a new algorithm which can be
viewed as a method for direct maximization of objec-
tive function @, subject to the constraint of problem 4.
We gave a precise characterization of local maxima of
this function with respect to TRW-S algorithm. We
showed that the algorithm is guaranteed to have a sub-
sequence converging to such a maximum.

As all tree-reweighted algorithms, our method is not
guaranteed to find a global maximum. Nevertheless,
experimental results suggest that this is not an issue
for certain synthetic and real problems. For the stereo
matching problem we were able to obtain slightly lower
energy than the expansion move algorithm [1] which is
considered to be the most accurate energy minimiza-
tion technique for such problems. TRW-S algorithm
outperforms both TRW algorithms in [7] and the or-
dinary max-product BP.

Our algorithm can be implemented efficiently only for
a particular choice of trees. Fortunately, nothing pre-
vents us from using this choice - the optimal value of
the lower bound does not depend on it.

In our experiments we noticed that TRW-S algorithm
would always converge to a fixed point of TRW, al-
though such convergence would usually take much

longer than achieving a weak tree agreement. How-
ever, we have not been able to prove this general con-
vergence. On the other hand, in practice it does not
make much sense to run the algorithm after WTA
has been achieved since function ®, and, more im-
portantly, the output configuration will not change.

In the future we plan to extend techniques proposed
in this paper to sum-product TRW algorithm [9].

Acknowledgements

I would like to thank Thomas Minka for helpful dis-
cussions.

References
[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approx-

imate energy minimization via graph cuts. PAMI,
23(11), November 2001.
[2] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient

belief propagation for early vision. CVPR, 2004.

[3] T. Heskes, K. Albers, and B. Kappen. Approximate
inference and constrained optimization. UAI 2003.

[4] V. Kolmogorov. Convergent tree-reweighted mes-
sage passing for energy minimization. Technical Re-
port MSR-TR-2004-90, Misrosoft Research, Septem-
ber 2004.

[6] Y.W. Teh and M. Welling. The unified propagation
and scaling algorithm. NIPS, 2002.

[6] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. A
new class of upper bounds on the log partition func-
tion. UAI 2002.

[7] M.J. Wainwright, T.S. Jaakkola, and A.S. Will-
sky. MAP estimation via agreement on (hyper)trees:
Message-passing and linear-programming approaches.
Technical Report UCB/CSD-03-1269, UC Berkeley
CS Division, August 2003.

[8] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky.
Tree-based reparameterization framework for analysis
of sum-product and related algorithms. IEEE Trans-
actions on Information Theory, 45(9):1120-1146, May
2003.

[9] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky.
Tree-reweighted belief propagation and approximate
ML estimation by pseudo-moment matching. AIS-
TATS, 2003.

[10] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky.
Tree consistency and bounds on the performance of
the max-product algorithm and its generalizations.
Statistics and Computing, 14(2):143-166, April 2004.

[11] W. Wiegerinck and T. Heskes. Fractional belief prop-
agation. NIPS, 2000.

[12] J.S. Yedidia, W.T. Freeman, and Y.Weiss. General-
ized belief propagation. NIPS, 2000.

[13] A.L. Yuille. CCCP algorithms to minimize the Bethe
and Kikuchi free energies: Convergent alternatives
to belief propagation. Neural Computation, 14:1691—
1722, 2002.

