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{first.last}@tuebingen.mpg.de

Abstract

We investigate the problem of defining
Hilbertian metrics resp. positive definite ker-
nels on probability measures, continuing the
work in [5]. This type of kernels has shown
very good results in text classification and
has a wide range of possible applications. In
this paper we extend the two-parameter fam-
ily of Hilbertian metrics of Topsøe such that
it now includes all commonly used Hilbertian
metrics on probability measures. This allows
us to do model selection among these met-
rics in an elegant and unified way. Second we
investigate further our approach to incorpo-
rate similarity information of the probability
space into the kernel. The analysis provides
a better understanding of these kernels and
gives in some cases a more efficient way to
compute them. Finally we compare all pro-
posed kernels in two text and two image clas-
sification problems.

1 Introduction

Kernel methods have shown in the last years that they
are one of the best and generally applicable tools in
machine learning. Their great advantage is that posi-
tive definite (pd) kernels can be defined on every set.
Therefore they can be applied to data of any type.
Nevertheless in order to get good results the kernel
should be adapted as well as possible to the underly-
ing structure of the input space. This has led in the
last years to the definition of kernels on graphs, trees
and manifolds. Kernels on probability measures also
belong to this category but they are already one level
higher since they are not defined on the structures di-
rectly but on probability measures on these structures.
In recent time they have become quite popular due to
the following possible applications:

• Direct application on probability measures e.g.
histogram data of text [8] and colors [1].

• Given a statistical model for the data one can first
fit the model to the data and then use the kernel
to compare two fits, see [8, 7]. Thereby linking
parametric and non-parametric models.

• Given a bounded probability space X one can use
the kernel to compare arbitrary sets in that space,
e.g by putting the uniform measure on each set.

In this paper we consider Hilbertian metrics and pd
kernels on M1

+(X )1. In a first section we will summa-
rize the close connection between Hilbertian metrics
and pd kernels so that in general statements for one
category can be easily transferred to the other one.
We will consider two types of kernels on probability
measures. The first one is general covariant. That
means that arbitrary smooth coordinate transforma-
tions of the underlying probability space will have no
influence on the kernel. Such kernels can be applied if
only the probability measures themselves are of inter-
est, but not the space they are defined on. We intro-
duce and extend a two parameter family of covariant
pd kernels which encompasses all previously used ker-
nels of this type. Despite the great success of these
general covariant kernels in text and image classifica-
tion, they have some shortcomings. For example for
some applications we might have a similarity measure
resp. a pd kernel on the probability space which we
would like to use for the kernel on probability mea-
sures. In the second part we further investigate types
of kernels on probability measures which incorporate
such a similarity measure, see [5]. This will yield on
the one hand a better understanding of these kernels
and on the other hand gives in some cases an efficient
way of computing these kernels. Finally we apply these
kernels on two text (Reuters and WebKB) and two im-
age classification tasks (Corel14 and USPS).

1M1
+(X ) denotes the set of positive measures µ on X

with µ(X ) = 1



2 Hilbertian Metrics versus Positive
Definite Kernels

It is a well-known fact that a pd kernel k(x, y) corre-
sponds to an inner product 〈φx, φy〉H in some feature
space H. The class of conditionally positive definite
(cpd) kernels is less well known. Nevertheless this class
is of great interest since Schölkopf showed in [11] that
all translation invariant kernel methods can also use
the bigger class of cpd kernels. Therefore we give a
short summary of this type of kernels and their con-
nection to Hilbertian metrics2.

Definition 2.1 A real valued function k on X × X
is pd (resp. cpd) if and only if k is symmetric and∑n

i,j cicjk(xi, xj) ≥ 0, for all n ∈ N, xi ∈ X , i =
1, ..., n, and for all ci ∈ R, i = 1, ..., n, (resp. for all
ci ∈ R, i = 1, ..., n, with

∑n
i ci = 0).

Note that every pd kernel is also cpd. The close con-
nection between the two classes is shown by the fol-
lowing lemma:

Lemma 2.1 [2] Let k be a kernel defined as k(x, y) =
k̂(x, y)− k̂(x, x0)− k̂(x0, y)+ k̂(x0, x0), where x0 ∈ X .
Then k is pd if and only if k̂ is cpd.

Similar to pd kernels one can also characterize cpd
kernels. Namely one can write all cpd kernels in the
form: k(x, y) = − 1

2 ‖φx − φy‖2H+f(x)+f(y). The cpd
kernels corresponding to Hilbertian (semi)-metrics are
characterized by f(x) = 0 for all x ∈ X , whereas if k is
pd it follows that f(x) = 1

2k(x, x) ≥ 0. We refer to [2,
3.2] and [11] for further details. We also would like to
point out that for SVM’s the class of Hilbertian (semi)-
metrics is in a sense more important than the class of
pd kernels. Namely one can show, see [4], that the
solution and optimization problem of the SVM only
depends on the Hilbertian (semi)-metric, which is im-
plicitly defined by each pd kernel. Moreover a whole
family of pd kernels induces the same semi-metric. In
order to avoid confusion we will in general speak of
Hilbertian metrics since, using Lemma 2.1, one can al-
ways define a corresponding pd kernel. Nevertheless
for the convenience of the reader we will often explic-
itly state the corresponding pd kernels.

2A (semi)-metric d(x, y) (A semi-metric d(x, y) fulfills
the conditions of a metric except that d(x, y) = 0 does
not imply x = y.) is called Hilbertian if one can em-
bed the (semi)-metric space (X , d) isometrically into a
Hilbert space. A (semi)-metric d is Hilbertian if and only
if −d2(x, y) is cpd. That is a classical result of Schoenberg.

3 γ-homogeneous Hilbertian Metrics
and Positive Definite Kernels on R+

3

The class of Hilbertian metrics on probability mea-
sures we consider in this paper are based on a point-
wise comparison of the densities p(x) with a Hilbertian
metric on R+. Therefore Hilbertian metrics on R+ are
the basic ingredient of our approach. In principle we
could use any Hilbertian metric on R+, but as we will
explain later we require the metric on probability mea-
sures to have a certain property. This in turn requires
that the Hilbertian metric on R+ is γ-homogeneous4.
The class of γ-homogeneous Hilbertian metrics on R+

was recently characterized by Fuglede:

Theorem 3.1 (Fuglede [3]) A symmetric function
d : R+ × R+ → R+ with d(x, y) = 0 ⇐⇒ x = y is
a γ-homogeneous, continuous Hilbertian metric d on
R+ if and only if there exists a (necessarily unique)
non-zero bounded measure ρ ≥ 0 on R+ such that d2

can be written as

d2(x, y) =
∫

R+

∣∣∣x(γ+iλ) − y(γ+iλ)
∣∣∣2 dρ(λ) (1)

Using Lemma 2.1 we define the corresponding class of
pd kernels on R+ by choosing x0 = 0. We will see later
that this corresponds to choosing the zero-measure as
origin of the RKHS.

Corollary 3.1 A symmetric function k : R+×R+ →
R+ with k(x, x) = 0 ⇐⇒ x = 0 is a 2γ-homogeneous
continuous pd kernel k on R+ if and only if there ex-
ists a (necessarily unique) non-zero bounded symmet-
ric measure κ ≥ 0 on R such that k is given as

k(x, y) =
∫

R
x(γ+iλ)y(γ−iλ) dκ(λ) (2)

Proof: If k has the form given in (2), then it is ob-
viously 2γ-homogeneous and since k(x, x) = x2γκ(R)
we have k(x, x) = 0 ⇐⇒ x = 0. The other direc-
tion follows by first noting that k(0, 0) = 〈φ0, φ0〉 =
0 and then by applying theorem 3.1, where κ is
the symmetrized version of ρ around the origin, to-
gether with lemma 2.1 and k(x, y) = 〈φx, φy〉 =
1
2

(
−d2(x, y) + d2(x, 0) + d2(y, 0)

)
. �

At first glance Theorem 3.1, though mathematically
beautiful, seems not to be very helpful from the view-
point of applications. But as we will show in the sec-
tion on structural pd kernels on M1

+(X ) this result
allows us to compute this class of kernels very effi-
ciently.

3R+ is the positive part of the real line with 0 included
4A symmetric function k is γ-homogeneous if

k(c x, c y) = cγk(x, y) for all c ∈ R+



Recently Topsøe and Fuglede proposed an interest-
ing two-parameter family of Hilbertian metrics on R+

[13, 3]. We extend now the parameter range of this
family. This allows us in the next section to recover
all previously used Hilbertian metrics on M1

+(X ) from
this family.

Theorem 3.2 The function d : R+×R+ → R defined
as:

d2
α|β(x, y) =

2
1
β (xα + yα)

1
α − 2

1
α

(
xβ + yβ

) 1
β

2
1
α − 2

1
β

(3)

is a 1/2-homogeneous Hilbertian metric on R+, if α ∈
[1,∞], β ∈ [ 12 , α] or β ∈ [−∞,−1]. Moreover the
pointwise limit for α → β is given as:

lim
α→β

d
2
α|β(x, y) =

β221/β

log(2)

∂

∂β

(
xβ + yβ

2

)(1/β)

=

(
xβ + yβ

) 1
β

log(2)

[
xβ

xβ + yβ
log

(
2xβ

xβ + yβ

)
+

yβ

xβ + yβ
log

(
2yβ

xβ + yβ

)]

Note that d2
α|β = d2

β|α. We need the following lemmas
in the proof:

Lemma 3.1 [2, 2.10] If k : X×X is cpd and k(x, x) ≤
0, ∀x ∈ X then −(−k)γ is also cpd for 0 < γ ≤ 1.

Lemma 3.2 If k : X × X → R is cpd and k(x, y) <
0, ∀x, y ∈ X , then −1/k is pd.

Proof: It follows from Theorem 2.3 in [2] that if
k : X × X → R− is cpd, then 1/(t − k) is pd for all
t > 0. The pointwise limit of a sequence of cpd resp.
pd kernels is cpd resp. pd if the limit exists, see e.g.
[10]. Therefore limt→0 1/(t − k) = −1/k is positive
definite if k is strictly negative. �

We can now prove Theorem 3.2:
Proof: The proof for the symmetry, the limit α → β
and the parameter range 1 ≤ α ≤ ∞, 1/2 ≤ β ≤ α
can be found in [3]. We prove that −d2

α|β is cpd for
1 ≤ α ≤ ∞, −∞ ≤ β ≤ −1. First note that k(x, y) =
−(f(x)+f(y)) is cpd on R+, for any function f : R+ →
R+ and satisfies k(x, y) ≤ 0, ∀x, y ∈ X . Therefore by
Lemma 3.1, −(xα +yα)1/α is cpd for 1 ≤ α < ∞. The
pointwise limit limα→∞−(xα + yα)1/α = −max{x, y}
exists, therefore we can include the limit α = ∞. Next
we consider k(x, y) = −(x + y)1/β for 1 ≤ β ≤ ∞
which is cpd as we have shown and strictly negative
if we restrict k to {x ∈ R |x > 0} × {x ∈ R |x > 0}.
Then all conditions for lemma 3.2 are fulfilled, so that
k(x, y) = (x + y)−1/β is pd. But then also k(x, y) =
(x−β+y−β)−1/β is pd. Moreover k can be continuously
extended to 0 by k(x, y) = 0 for x = 0 or y = 0.
Multiplying the first part with (2(1/α−1/β) − 1)−1 and
the second one with (1 − 2(1/β−1/α))−1 and adding
them gives the result. �

4 Covariant Hilbertian Metrics on
M1

+(X )

In this section we define Hilbertian metrics on M1
+(X )

by comparing the densities pointwise with a Hilbertian
metric on R+ and integrating these distances over X .
Since densities can only be defined with respect to a
dominating measure5 our definition will at first de-
pend on the choice of the dominating measure. This
dependence would restrict the applicability of our ap-
proach. For example if we had X = Rn and chose µ
to be the Lebesgue measure, then we could not deal
with Dirac measures δx since they are not dominated
by the Lebesgue measure.
Therefore we construct the Hilbertian metric such that
it is independent of the dominating measure. This jus-
tifies the term ’covariant’ since independence from the
dominating measure also yields invariance from arbi-
trary one-to-one coordinate transformations. In turn
this also implies that all structural properties of the
probability space will be ignored so that the metric on
M1

+(X ) only depends on the probability measures. As
an example take the color histograms of images. Co-
variance here means that the choice of the underlying
color space say RGB, HSV or CIE Lab does not influ-
ence our metric, since these color spaces are all related
by one-to-one transformations. Note however that in
practice the results will usually slightly differ due to
different discretizations of the color space.
In order to simplify the notation we define p(x) to be
the Radon-Nikodym derivative (dP/dµ)(x) 6 of P with
respect to the dominating measure µ.

Proposition 4.1 Let P and Q be two probability mea-
sures on X , µ an arbitrary dominating measure7 of P
and Q and dR+ a 1/2-homogeneous Hilbertian metric
on R+. Then DM1

+(X ) defined as

D2
M1

+(X )(P,Q) :=
∫
X

d2
R+

(p(x), q(x))dµ(x) , (4)

is a Hilbertian metric on M1
+(X ). DM1

+(X ) is inde-
pendent of the dominating measure µ.

For a proof, see [5]. Note that if we use an arbitrary
metric on R+ in the above proposition, we also get
a Hilbertian metric. But this metric would only be
defined on the set of measures dominated by a certain
measure µ and not onM1

+(X ). Moreover it would also
depend on the choice of the dominating measure µ.

5A measure µ dominates a measure ν if µ(E) > 0 when-
ever ν(E) > 0 for all measurable sets E ⊂ X . In Rn the
dominating measure µ is usually the Lebesgue measure.

6In case of X = Rn and when µ is the Lebesgue measure
we can think of p(x) as the normal density function.

7Such a dominating measure always exists take e.g.
M = (P + Q)/2



We can now apply this principle of building covariant
Hilbertian metrics on M1

+(X ) and use the family of
1/2-homogeneous Hilbertian metrics d2

α|β on R+ from
the previous section. This yields as special cases the
following well-known measures on M1

+(X ).

D2
1|−1(P,Q) =

∫
X

(p(x)− q(x))2

p(x) + q(x)
dµ(x),

D2
1
2 |1

(P,Q) =
∫
X

(
√

p(x)−
√

q(x))2dµ(x),

D2
1|1(P,Q) =

1
log(2)

∫
X

p(x) log
[

2p(x)
p(x) + q(x)

]
+ q(x) log

[
2q(x)

p(x) + q(x)

]
dµ(x),

D2
∞|1(P,Q) =

∫
X
|p(x)− q(x)|dµ(x). (5)

D2
1|−1 is the symmetric χ2-measure, D 1

2 |1
the Hellinger

distance, D2
1|1 the Jensen-Shannon divergence and

D2
∞|1 the total variation. The symmetric χ2-metric

was for some time wrongly assumed to be pd and is
new in this family due to our extension of d2

α|β to nega-
tive values of β. The Hellinger metric is well known in
the statistics community and was for example used in
[7]. The total variation was implicitly used in SVM’s
through a pd counterpart which we will give below.
Finally the Jensen-Shannon divergence is very inter-
esting since it is a symmetric and smoothed variant of
the Kullback-Leibler divergence. Instead of the work
in [9] where they have a heuristic approach to get from
the Kullback-Leibler divergence to a pd matrix, the
Jensen-Shannon divergence is a theoretically sound al-
ternative. Note that the family d2

α|β is designed in such
a way that the maximal distance of D2

α|β is 2,∀α, β.
For completeness we also give the corresponding pd
kernels on M1

+(X ), where we take in Lemma 2.1 the
zero measure as x0 in M1

+(X ). This choice seems
strange at first since we are dealing with probability
measures. But in fact the whole framework presented
in this paper can easily be extended to all finite, pos-
itive measures on X . For this set the zero measure is
a natural choice of the origin.

K1|−1(P,Q) =
∫
X

p(x)q(x)
p(x) + q(x)

dµ(x),

K 1
2 |1

(P,Q) =
∫
X

√
p(x)q(x)dµ(x),

K1|1(P,Q) =
−1

log(2)

∫
X

p(x) log
(

p(x)
p(x) + q(x)

)
+ q(x) log

(
q(x)

p(x) + q(x)

)
dµ(x),

K∞|1(P,Q) =
∫
X

min{p(x), q(x)}dµ(x). (6)

The astonishing fact is that we find the four (partially)
previously used Hilbertian metrics resp. pd kernels on
M1

+(X ) as special cases of a two-parameter family of
Hilbertian metrics resp. pd kernels on M1

+(X ). Due
to the symmetry of d2

α|β (which implies symmetry of
D2

α|β) we can even see all of them as special cases of
the family restricted to α = 1. This on the one hand
shows the close relation of these metrics among each
other and on the other hand gives us the opportunity
to do model selection in this one-parameter family of
Hilbertian metrics. Yielding an elegant way to handle
both the known similarity measures and intermediate
ones in the same framework.

5 Structural Positive Definite Kernels

The covariant Hilbertian metrics proposed in the last
section have the advantage that they only compare the
probability measures, thereby ignoring all structural
properties of the probability space. On the other hand
there exist cases where we have a reasonable similarity
measure on the space X , which we would like to be
incorporated into the metric. We will consider in this
section two ways of doing this.

5.1 Structural Kernel I

To incorporate structural information about the prob-
ability space X is helpful when we compare probability
measures with disjoint support. For the covariant met-
rics disjoint measures have always maximal distance,
irrespectively how ”close” or ”far” their support is.
Obviously if our training set consists only of disjoint
measures learning is not possible with covariant met-
rics. We have proposed in [5] a positive definite kernel
which incorporates a given similarity measure, namely
a pd kernel, on the probability space. The only disad-
vantage is that this kernel is not invariant with respect
to the dominating measure. That means we can only
define it for the subset M1

+(X , µ) ⊂ M1
+(X ) of mea-

sures dominated by µ. On the other hand in some
cases one has anyway a preferred measure like e.g. for
Riemannian manifolds where there exists a natural vol-
ume measure. Such a preferred measure is then a nat-
ural choice for the dominating measure, so that theo-
retically it does not seem to be a major restriction. For
our experiments it does not make any difference since
we anyway use only probabilities over finite, discrete
spaces, so that the uniform measure dominates all
other measures and therefore M1

+(X , µ) ≡M1
+(X ).

Theorem 5.1 (Structural Kernel I) Let k be a
bounded PD kernel on X and k̂ a bounded PD kernel
on R+. Then

KI(P,Q) =
∫
X

∫
X

k(x, y) k̂(p(x), q(y)) dµ(x) dµ(y)

(7)



is a pd kernel on M1
+(X , µ)×M1

+(X , µ).

We refer to [5] for the proof. Note that this kernel can
easily be extended to all bounded, signed measures as
it is in general true for all metrics resp. kernels in
this paper. This structural kernel generalizes previous
work done by Suquet, see [12], where the special case
with k̂(p(x), q(y)) = p(x)q(y) has been considered.
The advantage of this choice for k̂ is that KI(P,Q)
becomes independent of the dominating measure. In
fact it is easy to see that among the family of struc-
tural kernels KI(P,Q) of the form (7) this choice of
k̂ yields the only structural kernel K(P,Q) which is
independent of the dominating measure. Indeed for
independence bilinearity of k̂ is required, which yields
k̂(x, y) = xy k̂(1, 1).
The structural kernel has the disadvantage that the
computational cost increases dramatically compared
to the covariant one, since one has to integrate twice
over X . An implementation seems therefore only to be
possible for either very localized probability measures
or a sharply concentrated similarity kernel k̂ e.g. a
compactly supported radial basis function on Rn.
The following equivalent representation of this kernel
will provide a better understanding and at the same
time will show a way to reduce the computational cost
considerably.

Proposition 5.1 The kernel KI(P,Q) can be equiva-
lently written as the inner product in L2(T ×S, ω⊗κ):

KI(P,Q) =
∫

T

∫
S

φP (t, λ)φQ(t, λ) dκ(λ) dω(t)

for some sets T, S with the feature map:

φ :M1
+(X , µ) → L2(T × S, ω ⊗ κ),

P → φP (t, λ) =
∫
X

Γ(x, t)Ψ(p(x), s)dµ(x).

where

k(x, y) =
∫

T

Γ(x, t)Γ(y, t)dω(t),

k̂(p(x), q(x)) =
∫

S

Ψ(p(x), s)Ψ(p(y), s)dκ(s).

Proof: First note that one can write every pd ker-
nel in the form : k(x, y) = 〈Γ(x, ·),Γ(y, ·)〉L2(T,ω) =∫

T
Γ(x, t)Γ(y, t)dω(t), where Γ(x, ·) ∈ L2(T, µ) for

each x ∈ X . In general the space T is very big, since
one can show that such a representation always ex-
ists in L2(RX , µ), see e.g. [6]. For the product of two
positive definite kernels we have such a representation
on the set T × S. Since for any finite measure space
(Y, µ) one has L2(Y, µ) ⊂ L1(Y, µ) we can apply Fu-
bini’s theorem and interchange the integration order.

The definition of the feature map ΦP (t, λ) then follows
easily. �

This representation has several advantages. First the
functions Γ(x, t) give us a better idea what proper-
ties of the measure P are used in the structural ker-
nel. Second in the case where S × T is of the same
or smaller size than X we can decrease the computa-
tion cost, since we now have to do only an integration
over T × S instead of an integration over X × X . Fi-
nally this representation is a good starting point if one
wants to approximate the structural kernel. Since any
discretization of T, S, or X or integration over smaller
subsets, will nevertheless give a pd kernel in the end.
We illustrate this result with a simple example. We
take X = Rn and k(x, y) = k(x−y) to be a translation
invariant kernel, furthermore we take k̂(p(x), q(y)) =
p(x)q(y). The characterization of translation invariant
kernels on Rn is a classical result due to Bochner:

Theorem 5.2 A continuous function k(x, y) = k(x−
y) is pd on Rn if and only if k(x − y) =∫

Rn ei〈t,x−y〉dω(t), where ω is a finite non-negative
measure on Rn.

Obviously we have in this case T = Rn. Then
the above proposition tells us that we are effectively
computing the following feature vector for each P ,
φP (t) =

∫
Rn ei〈x,t〉p(x)dµ(x) = EP ei〈x,t〉. Finally the

structural kernel can in this case be equivalently writ-
ten as KI(P,Q) =

∫
Rn EP ei〈x,t〉EQei〈x,t〉dω(t). That

means the kernel is in this case nothing else than the
inner product between the characteristic functions of
the measures in L2(Rn, ω)8. Moreover the computa-
tional cost has decreased dramatically, since we only
have to integrate over T = Rn instead of Rn × Rn.
Therefore in this case the kernel computation has the
same computational complexity as in the case of the
covariant kernels. The calculation of the features, here
the characteristic functions, can be done as a prepro-
cessing step for each measure.

5.2 Structural Kernel II

The second structural kernel we propose has almost
the opposite properties compared to the first one. It is
invariant with respect to the dominating measure and
therefore defined on the set of all probability measures
M1

+(X ). On the other hand it can also incorporate a
similarity function on X , but the distance of disjoint
measures will not correspond to their ’closeness’ in X .

Theorem 5.3 (Structural Kernel II) Let s : X ×
X → R be a non-negative function, k̂ a one-
homogeneous pd kernel on R+ and µ a dominating

8Note that ω is not the Lebesgue measure.



measure of P and Q. Then

KII(P, Q) =

∫
X2

s(x, y)k̂(p(x), q(x))k̂(p(y), q(y))dµ(x) dµ(y),

(8)

is a pd kernel on M1
+(X ). KII is independent

of the dominating measure. Moreover KII(P,Q) ≥
0, ∀P,Q ∈ M1

+(X ) if s(x, y) is a bounded positive
definite kernel.

Proof: We first prove that KII is positive defi-
nite on M1

+(X ). Note that
∑n

i,j=1 cicjKII(Pi, Pj) =∫
X2

s(x, y)
n∑

i,j=1

cicj k̂(pi(x), pj(x))k̂(pi(y), pj(y))dµ(x)dµ(y)

The second term is a non-negative function in x and y,
since k̂2 positive definite on (R+ × R+)× (R+ × R+).
Since s(x, y) is also a non-negative function, the
integration over X ×X is positive. The independence
of KII(P,Q) of the dominating measure follows
from the one-homogeneity of k̂(x, y). Define now
f(x) = k̂(p(x), q(x)). Then f ∈ L1(X , µ) since∫
X |f(x)|dµ(x) ≤

∫
X

√
k̂(p(x), p(x))k̂(q(x), q(x))dµ(x)

= κ(R)2
∫
X

√
p(x)q(x)dµ(x) ≤ κ(R)2, where we

have used the representation of one-homogeneous
kernels. A bounded pd kernel s(x, y) defines a positive
definite integral operator I : L1(X , µ) → L∞(X , µ),
(Ig)(x) =

∫
X s(x, y)g(y)dµ(y). With the def-

inition of f(x) as above, KII is positive since
KII(P,Q) =

∫
X

∫
X s(x, y)f(x)f(y)dµ(x)µ(y) ≥ 0. �

Even if the kernel looks quite similar to the first one
it cannot be decomposed as the first one, since s(x, y)
need not be a positive definite kernel. We just give the
equivalent representation without proof:

Proposition 5.2 If s(x, y) is a positive definite kernel
on X , then KII(P,Q) can be equivalently written as:

KII(P,Q) =
∫

T

∣∣∣∣∫
X

Γ(x, t)k̂(p(x), q(x)dµ(x)
∣∣∣∣2 dω(t)

where s(x, y) =
∫

T
Γ(x, t)Γ(x, t)dω(t).

We illustrate this representation with a simple exam-
ple. Let s(x, y) be a translation-invariant kernel on
Rn. Then we can again use Bochner’s theorem for the
representation of s(x, y). The proposition then states
that the kernel KII(P,Q) is nothing else than the in-
tegrated power spectrum of the function k̂(p(x), q(x))
with respect to ω.

6 Experiments

We compared the performance of the proposed met-
rics/kernels in four classification tasks. All used data
sets consist of inherently positive data resp. counts of

terms, counts of pixels of a given color, intensity at a
given pixel. Also we will never encounter an infinite
number of counts in practice, so that the assumption
that the data consists of bounded, positive measures
seems reasonable. Moreover we normalize always so
that we get probability measures. For text data this is
one of the standard representations, also for the Corel
data this is quite natural, since all images have the
same size and therefore the same number of pixels.
This in turn implies that all images have the same
mass in color space. For the USPS dataset it might
seem at first a little bit odd to see digits as probabil-
ity measures. Still the results we get are comparable
to that of standard kernels without normalization, see
[10]. Nevertheless we don’t get state-of-the-art results
for USPS since we don’t implement invariance of the
digits with respect to translations and small rotations.
Details of the datasets and used similarity measures:

• Reuters text data set. The documents are rep-
resented as term histograms. Following [8] we
used the five most frequent classes earn, acq, mon-
eyFx, grain and crude. Documents which belong
to more than one of theses classes are excluded.
This results in a data set with 8085 examples of
dimension 18635.

• WebKB web pages data set. The documents are
also represented as term histograms. The four
most frequent classes student, faculty, course and
project are used. 4198 documents remain each of
dimension 24212, see [8]. For both structural ker-
nels we took for both text data sets the correlation
matrix in the bag of documents representation as
a pd kernel on the space of terms.

• Corel image data base. We chose the categories
Corel14 from the Corel image database as in [1].
The Corel14 has 14 classes each with 100 ex-
amples. As reported in [1] the classes are very
noisy, especially the bear and polar bear classes.
We performed a uniform quantization of each im-
age in the RGB color space, using 16 bins per
color, yielding 4096 dimensional histograms. For
both structural kernels we used as a similarity
measure on the RGB color space, the compactly
supported positive definite RBF kernel k(x, y) =
(1− ‖x− y‖ /dmax)2+, with dmax = 0.15, see [14].

• USPS data set. 7291 training and 2007 test
samples. For the first structural kernel we used
again the compactly supported RBF kernel with
dmax = 2.2, where we take the euclidean distance
on the pixel space such that the smallest distance
between two pixels is 1. For the second struc-
tural kernel we used as the similarity function
s(x, y) = 1‖x−y‖≤2.2.



All data sets were split into a training (80%) and a
test (20%) set. The multi-class problem was solved by
one-vs-all with SVM’s. For all experiments we used
the one-parameter family d2

α|1 of Hilbertian metrics
resp. their positive definite kernel counterparts kα|1
as basic metrics resp. kernels on R+, in order to build
the covariant Hilbertian metrics and both structural
kernels. In the table they are denoted as dir. Then a
second run was done by plugging the metric Dα|1(P,Q)
on M1

+(X ) induced by the covariant resp. structural
kernels into a Gaussian9:

Kα|1,λ(P,Q) = e−D2
α,1(P,Q)/λ (9)

They are denoted in the table as exp. As a com-
parison we show the results if one takes the linear
kernel on R+, k(x, y) = xy as a basis kernel. Note
that this kernel is 2-homogeneous compared to the 1-
homogeneous kernels kα|1. Therefore the linear kernel
will not yield a covariant kernel. As mentioned ear-
lier the first structural kernel becomes independent of
the dominating measure with this choice of k̂. Also in
this case we plugged the resulting metric on M1

+(X )
into a Gaussian for a second series of experiments.
In the simplest case this gives the Gaussian kernel
k(x, y) = exp(−‖x− y‖2 /λ).
For the penalty constant we chose from C =
{10k, k = −1, 0, 1, 2, 3, 4} and for α from α =
{1/2,±1,±2,±4,±16,∞} (α = −∞ coincides with
α = ∞). For the Gaussian (9) we chose additionally
from λ = 0.2∗σ∗{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, where
σ = 1

n

∑n
m=1 K(Pm, Pm). In order to find the best pa-

rameters for C,α resp. C,α, λ we performed 10-folds
cross validation. For the best parameters among α, C
resp. α, C, λ we evaluated the test error. Since the
Hilbertian metrics of (5) were not yet compared or
even used in kernel methods we also give the test er-
rors for the kernels corresponding to α = −1, 1/2, 1,∞.
The results are shown in table 1.

6.1 Interpretation

• The test error for the best α among the family
kα|1 selected by cross-validation gives for all three
types of kernels and their Gaussian transform al-
ways optimal or close to optimal results.

• For the text classification the covariant kernels
were always better than the structured ones. We
think that by using a better similarity measure on
terms the structural kernels should improve. For
the two image classification tasks the test errors
of the best structural kernel is roughly 10% better
than the best covariant one.

9It is well-known that this transform yields a positive
definite kernel iff D is a Hilbertian metric, see e.g. [2].

• The linear resp. Gaussian kernel were for the first
three data-sets always worse than the correspond-
ing covariant ones. This remains valid even if one
only compares the direct covariant ones with the
Gaussian kernel (so that one has in both cases
only a one-parameter family of kernels). For the
USPS dataset the results are comparable. Future
experiments have to show whether this remains
true if one considers unnormalized data.

7 Conclusion

We went on with the work started in [5] on Hilbertian
metrics resp. pd kernels on M1

+(X ). We extended
a family of Hilbertian metrics proposed by Topsøe,
so that now all previously used measures on proba-
bilities are now included in this family. Moreover we
studied further structural kernels on probability mea-
sures. We gave an equivalent representation for our
first structural kernel on M1

+(X ), which on the one
hand provides a better understanding how it captures
structure of the probability measures and on the other
hand gives in some cases a more efficient way to com-
pute it. Further we proposed a second structural ker-
nel which is independent of the dominating measure,
therefore yielding a structural kernel on all probability
measures. Finally we could show that doing model se-
lection in d2

α|1 resp. kα|1 gives almost optimal results
for covariant and structural kernels. Also the covariant
kernels and their Gaussian transform are almost al-
ways superior to the linear resp. the Gaussian kernel,
which suggests that the considered family of kernels
is a serious alternative whenever one has data which
is generically positive. It remains an open problem if
one can improve the structural kernels for text clas-
sification by using a better similarity function/kernel.
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