
Online (and Offline) on an Even Tighter Budget

Jason Weston
NEC Laboratories

America,
Princeton,
NJ, USA

jasonw@nec-labs.com

Antoine Bordes
NEC Laboratories

America,
Princeton,
NJ, USA

antoine@nec-labs.com

Leon Bottou
NEC Laboratories

America,
Princeton,
NJ, USA

leonb@nec-labs.com

Abstract

We develop a fast online kernel algorithm for
classification which can be viewed as an im-
provement over the one suggested by (Crammer,
Kandola and Singer, 2004), titled ”Online Clas-
sificaton on a Budget”. In that previous work,
the authors introduced an on-the-fly compression
of the number of examples used in the prediction
function using the size of the margin as a qual-
ity measure. Although displaying impressive re-
sults on relatively noise-free data we show how
their algorithm is susceptible in noisy problems.
Utilizing a new quality measure for an included
example, namely the error induced on a selected
subset of the training data, we gain improved
compression rates and insensitivity to noise over
the existing approach. Our method is also ex-
tendable to the batch training mode case.

1 Introduction

Rosenblatt’s Perceptron (Rosenblatt, 1957) efficiently con-
structs a hyperplane separating labeled examples (x i, yi) ∈
�

n × {−1, +1}. Memory requirements are minimal be-
cause the Perceptron is an online algorithm: each iteration
considers a single example and updates a candidate hyper-
plane accordingly. Yet it globally converges to a separating
hyperplane if such a hyperplane exists.

The Perceptron returns an arbitrary separating hyperplane
regardless of the minimal distance, or margin, between the
hyperplane and the examples. In contrast, the General-
ized Portrait algorithm (Vapnik and Lerner, 1963) explictly
seeks an hyperplane with maximal margins.

All the above methods produce a hyperplane whose normal
vector is expressed as a linear combination of examples.
Both training and recognition can be carried out with the
only knowledge of the dot products x ′

ixj between exam-
ples. Support Vector Machines (Boser, Guyon and Vapnik,

1992) produce maximum margin non-linear separating hy-
persurfaces by simply replacing the dot products by a Mer-
cer kernel K(xi, xj).

Neither the Generalized Portrait nor the Support Vector
Machines (SVM) are online algorithms. A set of training
examples must be gathered (and stored in memory) prior
to running the algorithm. Several authors have proposed
online Perceptron variants that feature both the margin and
kernel properties. Example of such algorithms include the
Relaxed Online Maximum Margin Algorithm (ROMMA)
(Li and Long, 2002), the Approximate Maximal Margin
Classification Algorithms (ALMA) (Gentile, 2001), and
the Margin Infused Relaxed Algorihm (MIRA) (Crammer
and Singer, 2003).

The computational requirements1 of kernel algorithms are
closely related to the sparsity of the linear combination
defining the separating hyper-surface. Each iteration of
most Perceptron variants considers a single example and
decides whether to insert it into the linear combination. The
Budget Perceptron (Crammer, Kandola and Singer, 2004)
achieves greater sparsity by also trying to remove some of
the examples already present in the linear combination.

This discussion only applies to the case where all examples
can be separated by a hyperplane or a hypersurface, that
is to say in the absence of noise. Support Vector Machines
use Soft Margins (Cortes and Vapnik, 1995) to handle noisy
examples at the expense of sparsity. Even in the case where
the training examples can be separated, using Soft Margins
often improves the test error. Noisy data sharply degrades
the performance of all the Perceptron variants discussed
above.

We propose a variant of the Perceptron algorithm that ad-
dresses this problem by removing examples from the lin-
ear combination on the basis of a direct measurement of
the training error in the spirit of Kernel Matching Pursuit
(KMP) (Vincent and Bengio, 2000). We show that this al-
gorithm has good performance on both noisy and non-noisy
data.

1and sometimes the generalization properties

2 Learning on a Budget

Figure 1 shows the Budget Perceptron algorithm (Cram-
mer, Kandola and Singer, 2004). Like Rosenblatt’s Per-
ceptron, this algorithm ensures that the hyperplane normal
wt can always be expressed as a linear combination of the
examples in set Ct:

wt =
∑

i∈Ct

αixi. (1)

Whereas Rosenblatt’s Perceptron updates the hyperplane
normal wt whenever the current example (xt, yt) is mis-
classified, the Budget Perceptron updates the normal when-
ever the margin is smaller than a predefined parameter
β > 0, that is to say whenever yt(xt ·wt) < β.

Choosing a large β ensures that the hyperplane will eventu-
ally become close to the maximal margin hyperplane. This
also increases the likelihood that an arbitrary example will
become part of the expansion (1) and make the final solu-
tion less sparse.

The Budget Perceptron addresses this problem with a re-
moval process. Whenever the number of expansion exam-
ples exceeds a predefined threshold p, the removal process
excludes one example from the expansion. More specifi-
cally, the removal process (steps 1a–1c, figure 1) simulates
the removal of each example and eventually selects the ex-
ample i that, when removed, remains recognized with the
largest margin:

i = argmax
j∈Ct

{yj(wt−1 − αjyjxj) · xj}

The justification for such a strategy is that the Perceptron
algorithm only adds examples to the cache when they are
errors. Early on in the training, examples may be added
because the decision rule learnt thus far is relatively inac-
curate, however later on these examples may be well classi-
fied as the direction of the hyperplane has changed consid-
erably. The standard Perceptron algorithm does not have
any removal procedure.

Several variants of this algorithms can be derived by chang-
ing the update formula (figure 2) or by replacing the dot
products by suitable kernel functions. The maximum size
of the expansion can be fixed or variable (Crammer, Kan-
dola and Singer, 2004). Essentially, to adapt to the vari-
able case one removes all examples that violate yj(wt−1 −
αjyjxj)·xj < β on each iteration. For simplicity however,
in the remainder of the paper we will present algorithms in
the simplest linear setup with Perceptron update and fixed
sized cache, and leave such variants to the reader.

Experimental results (Crammer, Kandola and Singer, 2004)
demonstrate that the Budget Perceptron performs ex-
tremely well on relatively noiseless problems. However, it
degrades quickly on noisy problems. Suppose for instance

Input: Margin β > 0, Cache Limit p.

Initialize: Set ∀t αt = 0, w0 = 0, C0 = ∅
Loop: For t = 1, . . . , T

– Get a new instance xt ∈ �
n, yt = ±1.

– Predict ŷt = sign(yt(xt ·wt−1))
– If yt(xt · wt−1) ≤ β update:

1. If |Ct| = p remove one example:
a Find i = arg max

j∈Ct

{yj(wt−1 − αjyjxj) · xj}
b Update wt−1 ← wt−1 − αiyixi.
c Remove Ct−1 ← Ct−1 \ {i}.

2. Insert Ct ← Ct−1 ∪ {t}.
3. Set αt = 1.
4. Compute wt ← wt−1 + αtytxt.

Output: H(x) = sign(wT · x).

Figure 1: The Budget Perceptron algorithm (Crammer,
Kandola and Singer, 2004).

that we randomly flip the labels of a small proportion η of
both the training and test examples. The misclassification
rate of the best hyperplane is at least η. Such misclassi-
fied examples accumulate into the Budget Perceptron ex-
pansion because only examples which are classified well
are removed. Mislabeled examples reverse the direction of
the normal wt, and poor performance follows.

Complexity Assuming we use an RBF kernel, the inser-
tion step requires O(pn) operations where p is the cache
size and n is the input dimensionality. The deletion step
requires O(p) operations, assuming all kernel calculations
are cached. Note that the latter cost is only incurred for
margin errors when the cache is full.

Perceptron (Rosenblatt, 1957)

αt = 1

MIRA (Crammer and Singer, 2003)

αt = min

„
1, max

„
0,

−yi(w · xi)

xi · xi

««

No-Bias-SVM (Kecman, Vogt and Huang, 2003) β = 1

αt = min

„
C, max

„
0,

1 − yi(w · xi)

xi · xi

««

Figure 2: Update Rules for Various Algorithms. These
can be used to replace step 3 in figure 1 or 3.

3 Learning on a Tighter Budget

The Budget Perceptron removal process simulates the re-
moval of each example and eventually selects the exam-
ple that remains recognized with the largest margin. This
margin can be viewed as an indirect estimate of the impact
of the removal on the overall performance of the hyper-
plane. Thus, to improve the Budget algorithm we propose
to replace this indirect estimate by a direct evaluation of the
misclassification rate. We term this algorithm the Tighter
Budget Perceptron. The idea is simply to replace the mea-
sure of margin

i = argmax
j∈Ct

{yj(wt−1 − αjyjxj) · xj} (2)

with the overall error rate on all currently seen examples:

i = arg min
j∈Ct

{
t∑

k=1

L(yk, sign((wt−1 − αjyjxj) · xk)}.

Intuitively, if an example is well classified (has a large mar-
gin) then not only will it be correctly classified when it is
removed as in equation (2) but also all other examples will
still be well classified as well. On the other hand, if an ex-
ample is an outlier then its contribution to the expansion of
w is likely to classify points incorrectly. Therefore when
removing an example from the cache one is likely to either
remove noise points or well-classified points first. Apart
from when the kernel matrix has very low rank we do in-
deed observe this behaviour, e.g. in figure 8.

Compared to the original Budget Perceptron, this removal
rule is more expensive to compute, now it requires O(t(p+
n)) operations (see section 2). Therefore in section 3.2 we
discuss ways of approximating this computation whilst still
retaining its desirable properties. First, however we dis-
cuss the relationship between this algorithm and existing
approaches.

3.1 Relation to Other Algorithms

Kernel Matching Pursuit The idea of kernel matching
pursuit (KMP) (Vincent and Bengio, 2000) is to build a
predictor w =

∑
i αixi greedily by adding one example at

a time, until a pre-chosen cache size p is found. The ex-
ample to add is chosen by searching for the example which
gives the largest decrease in error rate, usually in terms of
squared loss, but other choices of loss function are possible.
While this procedure is for batch learning, and not online
learning, clearly this criteria for addition is the same as our
criteria for deletion.

There are various variants of KMP, two of them called
basic- and backfitting- are described in figure 4. Basic
adapts only a single αi in the insertion step, whereas back-
fitting adjusts all αi of previously chosen points. The latter

Input: Margin β > 0, Cache Limit p.

Initialize: Set ∀t αt = 0, w0 = 0, C0 = ∅.

Loop: For t = 1, . . . , T

– Get a new instance xt ∈ �
n, yt = ±1.

– Predict ŷt = sign(yt(xt ·wt−1)).
– Get a new label yt.

– If yt(xt · wt−1) ≤ β update:

1. If |Ct| = p remove one example:
a Find i = argminj∈Ct

{∑t
k=1 L(yk, sign((wt−1 − αjyjxj) ·

xk)}.
b Update wt−1 ← wt−1 − αiyixi

c Remove Ct−1 ← Ct−1 \ {i}.
2. Insert Ct ← Ct−1 ∪ {t}.
3. Set αt = 1.
4. Compute wt ← wt−1 + αtytxt.

Output: H(x) = sign(wT · x).

Figure 3: The Tighter Budget Perceptron algorithm.

can be computed efficiently if the kernel matrix can be fit
into memory (the algorithm is given in (Vincent and Ben-
gio, 2000)), but is expensive for large datasets. The basic
algorithm, on the other hand does not perform well for clas-
sification, as shown in figure 8.

Note that we could adapt our algorithm’s addition step to
also be based on training error. However, using the Percep-
tron rule, an example is only added to the cache if it is an
error, making it more efficient to compute. Note that vari-
ants of KMP have also been introduced that incorporate a
deletion as well as an insertion step (Nair, Choudhury and
Keane, 2002).

Condense and Multi-edit Condense and multi-edit (De-
vijver and Kittler, 1982) are editing algorithms to ”spar-
sify” k-NN. Condense removes examples that are far from
the decision boundary. The Perceptron and the SVM al-
ready have their own ”condense” step as such points typi-
cally have αi = 0. The Budget Perceptron is an attempt to
make the condense step of the Perceptron more aggressive.
Multi-edit attempts to remove all the examples that are on
the wrong side of the Bayes decision boundary. One is
then left with learning a decision rule with non-overlapping
classes with the same Bayes decision boundary as before,
but with Bayes risk equal to zero. Note that neither the Per-
ceptron nor the SVM (with soft margin) perform this step 2,
and all incorrectly classified examples become support vec-

2An algorithm designed to combine the multi-edit step into
SVMs is developed in (Bakır, Bottou and Weston, 2004).

Input: Cache Limit p.

Initialize: Set ∀t αt = 0, w0 = 0, C0 = ∅.

Loop: For t = 1, . . . , p

– Choose (k, α) =

arg min
α, j=1...m

mX
i=1

(yj − (wt + αxj) · xi)
2.

– Insert Ct ← Ct−1 ∪ {t}.

– Basic-KMP:
Set wt ← wt−1 + αxk .

Backfitting-KMP:
Set wt ←

∑

i∈Ct

αixi where {αi} =

arg min
{αi}

mX
j=1

yj −

X
i∈Ct

αixi · xj)

!2

Output: H(x) = sign(wT · x).

Figure 4: The Basic and Backfitting Kernel Matching Pur-
suit (KMP) Algorithms (Vincent and Bengio, 2000).

tors with αi > 0. Combining condense and multi-edit to-
gether one only tries to keep the correctly classified exam-
ples close to the decision boundary. The Tighter Budget
Perceptron is also an approximate way of trying to achieve
these two goals, as previously discussed.

Regularization One could also view the Tighter Budget
Perceptron as an approximation of minimizing a regular-
ized objective of the form

1
m

∑
L(yi, f(xi)) + γ||α||0.

where operator || · ||0 is defined as counting the number
of nonzero coefficients. That is to say, the fixed sized
cache chosen acts a regularizer to reduce the capacity of the
set of functions implementable by the Perceptron rule, the
goal of which is to minimize the classification loss. This
means that for noisy problems, with a reduced cache size
one should see improved generalization error compared to
a standard Perceptron using the Tighter Budget Perceptron,
and we indeed find experimentally that this is the case.

3.2 Making the per-time-step complexity bounded by
a constant independent of t

An important requirement of online algorithms is that their
per-time-step complexity should be bounded by a constant
independent of t (t being the time-step index), for it is as-
sumed that samples arrive at a constant rate. The algorithm
in figure 3 grows linearly in the time, t, because of the com-
putation in step 1(a), that is when we choose the example

Input: Qt−1, xt, s

– Qt ← Qt−1 ∪ xt.

– If |Qt| > q

1. i = argmaxi∈Qt−1 si

2. Qt ← Qt \ xi

Output: Qt

Figure 5: Algorithm for maintaining a fixed cache size q
of relevant examples for estimating the training error. The
idea is to maintain a count si of the number of times the
prediction changes label for example i. One then retains
the examples which change labels most often.

in the cache to delete which results in the minimal loss over
all t observations:

i = arg min
j∈Ct

{
t∑

k=1

L(yk, sign((wt−1 − αjyjxj) · xk)}.

(Note that this extra computational expense is only invoked
when xt is a margin error, which if the problem has a low
error rate, is only on a small fraction of the iterations.) Nev-
ertheless, it is possible to consider approximations to this
equation to make the algorithm independent of t.

We could simply reduce the measure of loss to only the
fixed p examples in the cache:

i = arg min
j∈Ct

{
∑

k∈Ct

L(yk, sign((wt−1 − αjyjxj) · xk)}.

(3)
While this is faster to compute, it may be suboptimal as we
wish to have an estimator of the loss that is as unbiased as
possible, and the points that are selected in the cache are a
biased sample. However, they do have the advantage that
many of them may be close to the decision surface.

A more unbiased sample could be chosen simply by pick-
ing a fixed number of randomly chosen examples, say q
examples, where we choose q in advance. We define this
subset as Qt, where |Qt| = min(q, t) which is taken from
the t available examples until the cache is filled. Then we
compute:

i = arg min
j∈Ct

{
∑

k∈Qt

L(yk, sign((wt−1 − αjyjxj) · xk)}.

(4)

The problem with this strategy is that many of these exam-
ples may be either very easy to classify or always misla-
beled (noise) so this could be wastful.

We therefore suggest a secondary caching scheme to
choose the q examples with which we estimate the error.
We wish to keep the examples that are most likely to change

label as these are most likely to give us information about
the performance of the classifier. If an example is well
classified it will not change label easily when the classi-
fier changes slightly. Likewise, if an example is an outlier
it will be consisently incorrectly classified. In fact the num-
ber of examples that are relevant in this context should be
relatively small. We therefore keep a count s i of the num-
ber of times example xi has changed label, divided by the
amount of time it has been in the cache. If this value is
small then we can consider removing this point from the
secondary cache. When we receive a new observation at x t

at time t we thus perform the update given in figure 5 in the
case that xt is a margin error.

Complexity The last variant of the Tighter Budget Per-
ceptron has a deletion step cost of O(pq + qn) operations,
where p is the cache size, q is the secondary cache size, and
n is the input dimensionality. This should be compared to
O(p) for the Budget Perceptron, where clearly the deletion
step is still less expensive.

In the case of relatively noise free problems with a reason-
able cache size p, the deletion step occurs infrequently: by
the time the cache becomes full, the perceptron performs
well enough to make margin errors rare. The insertion step
then dominates the computational cost. In the case of noisy
problems, the cheaper deletion step of the Budget Percep-
tron performs too poorly to be considered a valid alterna-
tive. Moreover, as we shall see experimentally, the Tighter
Budget Perceptron can achieve the same test error as the
Budget Perceptron for smaller cache size p.

4 Experiments

4.1 2D Experiments - Online mode

Figure 6 shows a 2D classification problem of 1000 points
from two classes separated by a very small margin. We
show the decision rule found after one epoch of Percep-
tron, Budget Perceptron and Tighter Budget Perceptron
training, using a linear kernel. Both Budget Perceptrons
variants produce sparser solutions than the Perceptron, al-
though the Budget Perceptron provides slightly less accu-
rate solutions, even for larger cache sizes. Figure 7 shows a
similar dataset, but with overlapping classes. The Percep-
tron algorithm will fail to converge with multiple epochs in
this case. After one epoch a decision rule is obtained with a
relatively large number of SVs. Most examples which are
on the wrong side of the Bayes decision rule are SVs. 3

The Budget Perceptron fails to alleviate this problem. Al-
though one can reduce the cache size to force more sparsity,
the decision rule obtained is highly inaccurate. This is due
to noise points which are far from the decision boundary

3Note that support vector machines, not shown, also suffer
from a similar deficiency in terms of sparsity - all incorrectly clas-
sified examples are SVs.

Perceptron (16 SVs) Tighter Budget Ptron (5 SVs)

Budget Perceptron (5 SVs) Budget Perceptron (10 SVs)

Figure 6: Separable Toy Data in Online Mode. The Bud-
get Perceptron of (Crammer, Kandola and Singer, 2004)
and our Tighter Budget Perceptron provide sparser solu-
tions than the Perceptron algorithm, however the Budget
Perceptron seems sometimes to provide slightly worse so-
lutions.

being the last vectors to be removed from the cache, as can
be seen in the example with a cache size of 50.

4.2 2D Experiments - Batch mode

Figure 8 shows a 2D binary classification problem with the
decision surface found by the Tighter Budget Perceptron,
Budget Perceptron, Perceptron, SVM, and two flavors of
KMP when using the same Gaussian kernel. For the on-
line algorithms we ran multiple epochs over the dataset
until convergence. This example gives a simple demon-
stration of how the Budget and Tighter Budget Perceptrons
can achieve a greater level of sparsity than the Perceptron,
whilst choosing examples that are close to the margin, in
constrast to the KMP algorithm.

Where possible in the fixed cache algorithms, we fixed the
cache sizes to 10 SVs (examples highlighted with squares),
as a trained SVM uses this number. The Perceptron is not
as sparse as SVM, and uses 19 SVs. However both the
Budget Perceptron and the Tighter Budget Perceptron still
separate the data with 10 SVs. The Perceptron required 14
epochs to converge, the Tighter Budget Perceptron required
22, the Budget Perceptron required 26 (however, we had to
decrease the width of the Gaussian kernel for the last algo-
rithm as it did not converge for larger widths). Backfitting-
KMP provides as good sparsity as SVM. Basic-KMP does
not give zero error even after 400 iterations, and by this
time has used 37 SVs (it cycles around the same SVs many
times). Note that all the algorithms except KMP choose

Perceptron (103 SVs) Tighter Budget Ptron (5 SVs)

Budget Perceptron (5 SVs) Budget Perceptron (50 SVs)

Figure 7: Noisy Toy Data in Online Mode. The Percep-
tron and Budget Perceptron (independent of cache size)
fail when problems contain noise, as demonstrated by a
simple 2D problem with Gaussian noise in one dimension.
The Tighter Budget Perceptron, however, finds a separation
very close to the Bayes rule.

SVs close to the margin.

4.3 Benchmark Datasets

We conducted experiments on three well-known datasets:
the US Postal Service (USPS) Database, Waveform and
Banana4. A summary of the datasets is given in Table 1.
For all three cases (USPS,Waveform,Banana) we chose an
RBF kernel, the width values were taken from (Vapnik,
1998) and (Rätsch, Onoda and Müller, 2001), and are cho-
sen to be optimal for SVMs, the latter two by cross vali-
dation. We used the same widths for all other algorithms,
despite that these may be suboptimal in these cases. For
USPS we considered the two class problem of separating
digit zero from the rest. We also constructed a second ex-
periment by corrupting USPS with label noise. We ran-
domly flipped the labels of 10% of the data in the training
set to observe the performance effects on the algorithms
tested (for SVMs, we report the test error with the optimal
value of C chosen on the test set, in this case, C = 10).

We tested the Tighter Budget Perceptron, Budget Percep-
tron and Perceptron in an online setting by only allowing
one pass through the training data. Obviously this puts
these algorithms at a disadvantage compared to batch al-
gorithms such as SVMs which can look at training points
multiple times. Nevertheless, we compare with SVMs as

4USPS is available at ftp://ftp.kyb.tuebingen.
mpg.de/pub/bs/data. Waveform and Banana are available
at http://mlg.anu.edu.au/˜raetsch/data/.

Perceptron (19 SVs) Tighter Budget Ptron (10 SVs)

Budget Perceptron (10 SVs) basic-KMP (37 SVs)

backfitting-KMP (10 SVs) SVM (10 SVs)

Figure 8: Nonlinear Toy Data in Batch Mode. We com-
pare various algorithms on a simple nonlinear dataset fol-
lowing (Vincent and Bengio, 2000). See the text for more
explanation.

our gold standard measure of performance. The results are
given in figures 9-12. In all cases for the Perceptron vari-
ants we use β = 0 and for the Tighter Budget Perceptron
we employ the algorithm given in figure 3 without the com-
putational efficiency techniques given in section 3.2. We
show the test error against different fixed cache sizes p re-
sulting in p support vectors. We report averages over 5 runs
for USPS and 10 runs for Waveform and Banana. The er-
ror bars indicate the maximum and minimum values over
all runs.

The results show the Tighter Budget Perceptron yielding
similar test error performance to the SVM but with consid-
erably less SVs. The Budget Perceptron fares less well with

Name Inputs Train Test σ C

USPS 256 7329 2000 128 1000
Waveform 21 4000 1000 3.16 1
Banana 2 4000 1300 0.7 316

Table 1: Datasets used in the experiments. The hyper-
parameters are for an SVM with RBF kernel, taken from
(Vapnik, 1998) and (Rätsch, Onoda and Müller, 2001).

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
es

t E
rr

or

SVs

Budget Perceptron
Tighter Budget Perceptron
Tighter Budget Pton (10 epochs)
SVM
Perceptron
Perceptron (10 epochs)

Figure 9: USPS Digit 0 vs Rest.

7 20 55 148 403 1097 2981
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
es

t E
rr

or

SVs

Budget Perceptron
Tighter Budget Perceptron
SVM
Perceptron
Perceptron (10 epochs)

Figure 10: USPS Digit 0 vs Rest + 10% noise.

the test error degrading considerably faster for decreasing
cache size compared to the Tighter Budget Perceptron, par-
ticularly on the noisy problems. Note that if the cache
size is large enough both the Budget and Tighter Budget
Perceptrons converge to the Perceptron solution, hence the
two curves meet at their furthest point. However, while the
test error immediately degrades for the Budget Perceptron,
for the Tighter Budget Perceptron the test error in fact im-
proves over the Perceptron test error in both the noisy prob-
lems. This should be expected as the standard Perceptron
cannot deal with overlapping classes.

In figure 9 we also show the Tighter Budget Perceptron
with (up to) 10 epochs on USPS (typically the algorithm
converges before 10 epochs). The performance is similar to
only 1 epoch for small cache sizes. For larger cache sizes,
clearly the maximum cache size converges to the same per-
formance of a Perceptron with 10 epochs, which in this
case gives slightly better performance than any cache size
possible with 1 epoch.

4.4 Faster Error Computation

In this section we explore the error evaluation cache strate-
gies described previously in section 3.2. We compared the
following strategies to evaluate error rates: (i) using all

200 400 600 800 1000
0.05

0.1

0.15

0.2

0.25

0.3

T
es

t E
rr

or

SVs

Budget Perceptron
Tighter Budget Perceptron
SVM
Perceptron
Perceptron (10 epochs)

Figure 11: Waveform Dataset.

200 400 600 800

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
es

t E
rr

or

SVs

Budget Perceptron
Tighter Budget Perceptron
SVM
Perceptron
Perceptron (10 epochs)

Figure 12: Banana Dataset.

points so far seen, (ii) using only the support vectors in the
cache, i.e. equation (3), (iii) using a random cache of size
q, i.e. equation (4), and (iv) using a cache of size q of the
examples that flip label most often, i.e. figure 5.

Figure 13 compares these methods on the USPS dataset for
fixed cache size of support vectors p = 35 and p = 85. The
results are averaged over 40 runs (the error bars show the
standard error).

We compare different amounts of evaluation vectors q. The
results show that considerable computational speedup can
be gained by any of the methods compared to keeping all
training vectors. Keeping a cache of examples that change
label most often performs better than a random cache for
small cache sizes. Using the support vectors themselves
also performs better than the random strategy for the same
cache size. This makes sense as support vectors them-
selves are likely to be examples that can change label easily,
making it similar to the cache of examples that most often
change label. Nevertheless, it can be worthwhile to have a
small number of support vectors for fast evaluation, but a
larger set of error evaluation vectors when an error is en-
countered. We suggest to choose q and p such that a cache
of the qp kernel calculations fits in memory at all times.

7 55 403 2981

0.01

0.02

0.03

0.04

Error−Evaluation Cache Size (Q)

T
es

t E
rr

or

0 2000 4000 6000

0.01

0.02

0.03

0.04

Error−Evaluation Cache Size (Q)

T
es

t E
rr

or

Random Cache
Most flipped in Cache
Only SVs in cache

7 55 403 2981

0.01

0.02

0.03

0.04

Error−Evaluation Cache Size (Q)

T
es

t E
rr

or

0 2000 4000 6000

0.01

0.02

0.03

0.04

Error−Evaluation Cache Size (Q)
T

es
t E

rr
or

Random Cache
Most flipped in Cache
Only SVs in cache

Figure 13: Error Rates for Different Error Measure
Cache Strategies on USPS, digit zero versus the rest.
The number of SVs is fixed to 35 in the top row, and 85
in the bottom row, the left-hand plots are log plots of the
right-hand ones. The different strategies change the num-
ber of points used to evaluate the error rate for the SV cache
deletion process.

5 Summary

We have introduced a sparse online algorithm that is a vari-
ant of the Perceptron. It attempts to deal with some of
the computational issues of using kernel algorithms in an
online setting by restricting the number of SVs one can
use. It also allows methods such as the Perceptron to deal
with overlapping classes and noise. It can be considered
as an improvement over the Budget Perceptron of (Cram-
mer, Kandola and Singer, 2004) because it is empirically
sparser than that method for the same error rate, and can
handles noisy problems while that method cannot. Our
method tends to keep only points that are close to the mar-
gin and that lie on the correct side of the Bayes decision
rule. This occurs because other examples are less useful
for describing a decision rule with low error rate, which is
the quality measure we use for inclusion in to the cache.

However, the cost of this is that quality measure used
to evaluate training points is more expensive to compute
than for the Budget Perceptron (and in this sense the
name ”Tighter Budget Perceptron” is slightly misleading).
However, we believe there exist various approximations to
speed up this method whilst retaining its useful properties.
We explored some strategies in this vein by introducing a
small secondary cache of evaluation vectors with positive
results. Future work should investigate further ways to im-
prove on this, some first suggestions being to only look at
a subset of points to remove on each iteration, or to remove
the worst n points every n iterations.

Acknowledgements

Part of this work was funded by NSF grant CCR-0325463.

References

Bakır, G., Bottou, L., and Weston, J. (2004). Breaking SVM
Complexity with Cross-Training. In Advances in Neural In-
formation Processing Systems 17 (NIPS 2004). MIT Press,
Cambridge, MA. to appear.

Boser, B. E., Guyon, I. M., and Vapnik, V. (1992). A Training Al-
gorithm for Optimal Margin Classifiers. In Haussler, D., ed-
itor, Proceedings of the 5th Annual ACM Workshop on Com-
putational Learning Theory, pages 144–152, Pittsburgh, PA.
ACM Press.

Cortes, C. and Vapnik, V. (1995). Support Vector Networks. Ma-
chine Learning, 20:273–297.

Crammer, K., Kandola, J., and Singer, Y. (2004). Online Classi-
fication on a Budget. In Thrun, S., Saul, L., and Schölkopf,
B., editors, Advances in Neural Information Processing Sys-
tems 16. MIT Press, Cambridge, MA.

Crammer, K. and Singer, Y. (2003). Ultraconservative Online
Algorithms for Multiclass Problems. Journal of Machine
Learning Research, 3:951–991.

Devijver, P. and Kittler, J. (1982). Pattern Recogniton, A statisti-
cal approach. Prentice Hall, Englewood Cliffs.

Gentile, C. (2001). A New Approximate Maximal Margin Classi-
fication Algorithm. Journal of Machine Learning Research,
2:213–242.

Kecman, V., Vogt, M., and Huang, T. (2003). On the Equality
of Kernel AdaTron and Sequential Minimal Optimization in
Classification and Regression Tasks and Alike Algorithms
for Kernel Machines. In Proceedings of European Sym-
posium on Artificial Neural Networks, ESANN’2003, pages
215–222, Evere, Belgium. D-side Publications.

Li, Y. and Long, P. (2002). The Relaxed Online Maximum Mar-
gin Algorithm. Machine Learning, 46:361–387.

Nair, P. B., Choudhury, A., and Keane, A. J. (2002). Some Greedy
Learning Algorithms for Sparse Regression and Classifica-
tion with Mercer Kernels. Journal of Machine Learning Re-
search, 3:781–801.

Rätsch, G., Onoda, T., and Müller, K.-R. (2001). Soft Margins
for AdaBoost. Machine Learning, 42(3):287–320. Also:
NeuroCOLT Technical Report 1998-021.

Rosenblatt, F. (1957). The Perceptron: A perceiving and rec-
ognizing automaton. Technical Report 85-460-1, Project
PARA, Cornell Aeronautical Lab.

Vapnik, V. and Lerner, A. (1963). Pattern Recognition using Gen-
eralized Portrait Method. Automation and Remote Control,
24:774–780.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New
York.

Vincent, P. and Bengio, Y. (2000). Kernel Matching Pur-
suit. Technical Report 1179, Département d’Informatique
et Recherche Opérationnelle, Université de Montréal. Pre-
sented at Snowbird’00.

