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Abstract higher than negative ones. This captures, for example, the
The area under the ROC curve (AUC) has been information retrieval problem described above; in this case,
training examples consist of documents labeled as relevant
(positive) or irrelevant (negative). This form of ranking
problem corresponds to the ‘bipartite feedback’ case of [9];
we therefore refer to it as th@partite ranking problem.

advocated as an evaluation criterion for the bi-
partite ranking problem. We study uniform con-
vergence properties of the AUC; in particular, we
derive a distribution-free uniform convergence

bound for the AUC which serves to bound the Formally, the setting of the bipartite ranking problem is
expected accuracy of a learned ranking function  similar to that of the binary classification problem. In
in terms of its empirical AUC on the training se- both problems, there is an instance spaceand a set
guence from which itis learned. Our bound is ex- of two class labelsy = {-1,+1}. One is given
pressed in terms of a new set of combinatorial pa- a finite sequence of labeled training examplgs =
rameters that we term tHapartite rank-shatter ((x1,91)5- -, (Xar,yar)) € (X x V)M, and the goal is to
coefficientsthese play the same role in our result learn a function based on this training sequence. However,
as do the standard VC-dimension related shatter  the form of the function to be learned in the two problems is
coefficients (also known as the growth function) different. In classification, one seeks a binary-valued func-
in uniform convergence results for the classifica- tion h : X—) that predicts the class of a new instance in
tion error rate. A comparison of our result with X. On the other hand, in ranking, one seeksal-valued

a recent uniform convergence result derived by function f : X — R that induces a ranking oveY; an in-
Freund et al. [9] for a quantity closely related to stance that is assigned a higher valueflig ranked higher

the AUC shows that the bound provided by our than one that is assigned a lower valuefoy

result can be considerably tighter. )
yh9 Thearea under the ROC curyf@UC) has recently gained

attention as an evaluation criterion for the bipartite ranking
1 INTRODUCTION problem [5]. Given a ranking functiofi : X—R and a
: . . data sequenc® = ((x1,y1),-- -, (xXx,yn)) € (X x V)N
In many learning problems, the goal is not simply to CIas'containingm positive andn negative examples, the AUC

sify objects into one of a fixed number of classes; instead, as £ with respect tdT', denotedA(f; T, can be expressed

ranklngof quects IS desired. This is the case, for exampled,as the following Wilcoxon-Mann-Whitney statistic [5]:
in information retrieval problems, where one is intereste

in retrieving documents from some database that are ‘reled(f; T) =
vant’ to a given query or topic. In such problems, one wants 1 1
. ) — Ly fise)> fxs X re— et ), (A
to return to the user a list of documents that contains relemn > _ > < > 0x)) T 5 M Grd=1( ])}> (1)
. {iryi=+1} {jiy;=—1}
vant documents at the top and irrelevant documents at the o ] )
bottom; in other words, one wants a ranking of the docuWherel, ., denotes the indicator variable whose value is

ments such that relevant documents are ranked higher th@¥€ if its argument is true and zero otherwise. The AUC of
irrelevant documents. f with respect tdl" is thus simply the fraction of positive-

negative pairs iff” that are ranked correctly hf, assuming
The problem of ranking has been studied from a learningnhat ties are broken uniformly at randdm.

perspective under a variety of settings [4, 10, 6, 9]. Here ) B ] ]
we consider the setting in which objects come from two Ihe AUC is an empirical quantity that evaluates a ranking

categories, positive and negative; the learner is given exanfunction with respect to a particular data sequence. What
ples of objects labeled as positive or negative, and the goal 1, [5], a slightly simpler form of the Wilcoxon-Mann-
is to learn a ranking in which positive objects are rankedwhitney statistic is used, which does not account for ties.



does the empirical AUC tell us about the expected perforDefinition 1 (Expected ranking accuracy). Let f
mance of a ranking function on future examples? This is¥ —R be a ranking function ort. Define theexpected
the question we consider. The question has two parts, bottanking accuracyor simply ranking accuragyof f, de-
of which are important for machine learning practice. First,noted byA(f), as follows:

what can be said about the expected performance of a rank- 1

ing function based on its empirical AUC on an indepen—A(f) =Ex.p x~p {I{f(X>>f<X/)} + §I{f<X>:f(X’>}} :
dent test sequence? Second, what can be said about the

expected performance of a learned ranking function basetthe ranking accuracyl(f) defined above is simply the
on its empirical AUC on the training sequence from which probability that an instance drawn randomly according to
itis learned? The first question is addressed in [1]; we adD_ ; will be ranked higher byf than an instance drawn
dress the second question in this paper. randomly according t@®_+, assuming that ties are broken

We start by defining the expected ranking accuracy of 4'niformly at random. The following simple lemma shows
ranking function (analogous to the expected error rate of &1at the empirical AUC of a ranking functiofiis an unbi-
classification function) in Section 2. Section 3 contains our2Sed estimator of the expected ranking accurac. of
uniform convergence result, which serves to bound the ex-

pected accuracy of a learned ranking function in terms of itd-€mma 1. Let f : Y—R be a ranking function ort’, and

— N N
empirical AUC on a training sequence. Our uniform con-'ety = (y1,...,yn) € Y7 be a finite label sequence.
vergence bound is expressed in terms of a new set of comb hen E AT 2
natorial parameters that we term the bipartite rank-shatter TX‘TY:E{ (f; )} = Al

the standard shatter coefficients (also known as the growt roof. Letm be the _number O.f positive labels in qn_d_n
e number of negative labelsgjn Then from the definition

function) in uniform convergence results for the classifica- S . : :

tion error rate. Properties of the bipartite rank-shatter coef—mc empirical AUC (Eq. (1)) and linearity of expectation, we
e ; i . . have
ficients are discussed in Section 4. Section 5 compares our

result with a recent uniform convergence result derived byErx 7y =y {A(f;T)}

coefficients; these play the same role in our result as dﬁl

Freund et al. [9] for a quantity closely related to the AUC. 1 - 1
We conclude with some open questions in Section 6. T mn . Z+1} u > N XiND“’XfND*l{ FX)>F(X)
iy = Jyj=—
1
2 EXPECTED RANKING ACCURACY +§I{f(xi>:f<xz‘>}}
1
We begin by introducing some notation. As in classifica- — 5, Z _ Z A(f)
tion, we shall assume that all examples are drawn randomly {agi=t1} {gyy=—1}

and independently according to some (unknown) underly- = A(f)- 0

ing distributionD over X’ x ). The notatiorD_; andD_;

will be used to denote the class-conditional distributions3 UNIFORM CONVERGENCE BOUND
Dx|y—+1 andDx|y—__,, respectively. We use an under-

line to denote a sequence,g, y € YN to denote a se- We are interested in bounding the probability that the em-

quence of elements 1. We shall find it convenient to de- pirical AUC of a learned ranking functiorfs with re-

compose a data sequerife= ((x1,41),---, (Xn,yn)) € spect to the (random) training sequertt&éom which it is
(X x V)V into two components]y = (xi,...,Xy) € learned will have a large deviation from its expected rank-
XN andTy = (y1,...,yn) € YN. Several of our re- ing accuracy, when the functiofy is chosen from a pos-

sults will involve the conditional distributioDr, |7, —, sibly infinite function classF. The standard approach for

for some label sequenag = (y1,...,yy) € YV; this obtaini.ng such bounds is via uniform convergence results.
distribution is simpIyDy;x ... x Dyy.2 As a final note In particular, we have for any=> 0,

of convention, we us@' € (X x V)N to denote a gen- P{‘A(fs;g) _ A(fs)‘ > e}

eral data sequence.(), an independent test sequence), and

S € (X x ¥)M to denote a training sequence. < P {?22 A(f;S) — A(f)‘ > e} .

*Note that, since the AUC of a ranking functigiwith respect  Therefore, to bound probabilities of the form on the left
to a data sequence € (X' x Y)" is independent of the actual |\, side above, it is sufficient to derive a uniform conver-
ordering of examples in the sequence, our results involving the It that b d babiliti f the f h
conditional distributiorDr |7, -, for some label sequenge= gence resu t.t at boun S proba llities of the form on the
(y1,...,yn) € YN depend only on the numben of positive right hand side. Qur uniform convergence result_ for the
labels iny and the number of negative labels i. We chooseto  AUC is expressed in terms of a new set of combinatorial
state our results in terms of the distributi®a-, |1, —, = D,, x ~ parameters, termed th@partite rank-shatter coefficients

... x Dy, only because this is more general tiaf#; x D~;. that we define below.



Definition 2 (Bipartite rank matrix). Let f : X—R be  Theorem 2. Let F be a class of real-valued functions on
a ranking function on¥, let m,n € N, and letx = X, andlety = (yi,...,ym) € YM be any label sequence
(X1, X)) € XM, x' = (x],...,%,) € X". Definethe  of lengthM € N. Letm be the number of positive labels
bipartite rank matrof f with respect tax, x’, denoted by  in y, andn = M — m the number of negative labels in
B (x,x'), to be the matrix if{0, 3, 1}™>*™ whose(i, j)-th ~ Then for any > 0, a
element is given by b { ’A(f s A(f)’ N }
—y 4§ Su ; — €
Brxx)],;, = Ljmosrey + %I{f(xfz)=f(x;)} R Ve
foralli e {1,...,m},je{1,...,n} < 4r(F,2m,2n) - e /BN

Definition 3 (Bipartite rank-shatter coefficient). Let 7  The proof is adapted from uniform convergence proofs for
be a class of real—valyed funct|ons anh and |€‘tm, neN.  the classification error rate (see, for example, [2, 8]). The
Define the(m, n)-th bipartite rank-shatter coefficieaf 7,  main difference is that since the AUC cannot be expressed

denoted by-(F,m, n), as follows: as a sum of independent random variables, more powerful
r(Fomon) = max  |[{Bs(xx)|feF}. inequalitie_s are required. In par_ticular, a result of Devroye
XEXT X EXT [7] is required to bound the variance of the AUC that ap-

pears after an application of Chebyshev’s inequality, and
McDiarmid’s inequality [12] is required in the final step of
the proof where Hoeffding’s inequality sufficed in the case
of classification. Details are given in Appendix A.

Clearly, for finite 7, we haver(F,m,n) < |F| for all
m,n. In generaly(F, m,n) < 3™ for all m,n. In fact,
not all 3™ matrices in{0, 1,1}™*" can be realized as
bipartite rank matrices. Therefore, we have
r(F,m,n) < ¥(m,n), We note that the result of Theorem 2 can be strengthened

1ymxn so that the conditioning is only on the numbersandn of

epositive and negative labels, and not on the specific label
vectory.> From Theorem 2, we can derive a confidence
interval interpretation of the bound as follows:

wheret(m, n) is the number of matrices if0, %,
that can be realized as a bipartite rank matrix. The numb
¥ (m,n) can be characterized in the following ways (proof
omitted due to lack of space):

Theorem 1. Let /(m,n) be the number of matrices in Corollary 1. Let be a class of real-valued functions on

{0,3,1}™*" that can be realized as a bipartite rank X, andlety = (y1,...,yn) € Y be any Iabel_s_equence
matrix B ; (x, x) for somef : ¥ —R, x € X™, x' € A" of lengthM € N. Letm be the number of positive labels
Then o o o iny, andn = M — m the number of negative labels in

e <
1. ¢y(m,n) is equal to the number of complete mixed Then forany) <9 <1,

acyclic (m,n)-bipartite graphs (where a mixed Poy sy sup‘/l(f;S)—A(f)‘ >
graph is one which may contain both directed and " *| rer B
undirected edges, and where we define a cycle in such \/

a graph as a cycle that contains at least one directed
edge and in which all directed edges have the same

directionality along the cycle).
2. ¢(m,n) is equal to the number of matrices in

{0, %, 1}™m>™ that do not contain a sub-matrix of any
of the forms shown in Table 1.

8(m +n) (Inr(F, 2m, 2n) +1n(‘§))} <5

Proof. This follows directly from Theorem 2 by settinig
r(F,2m,2n) - e=mne’/8(m+n) — § and solving fore. O

As in the case of the large deviation bound of [1], the con-
We discuss further properties of the bipartite rank-shattefidence interval above can be generalized to remove the
coefficients in Section 4; we first present below our uniform¢onditioning on the label vector completely (we note that
convergence result in terms of these coefficients. The folTheorem 2 cannot be generalized in this manner):
lowing can be viewed as the main result of this paper. We i
note that our results are all distribution-free, in the sensd Neorem 3. Let 7 be a class of real-valued functions on
that they hold for any distributio® overt’ x ). &, and letM € N. Then forany <4 < 1,

Py pnd sup |[A(f;S) — A(f)| >
feF

Table 1: Sub-matrices that cannot appear in a bipartite 7
rank matrix. \/ 8 (Inr (F, 2p(Sv)M, 2(1 — p(S¥))M) + In (3)) } <5

DU B B GO B B 29 B4 LY A =S
Vel e Vel L vl Lve where p(Sy-) denotes the proportion of positive labels in
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30ur thanks to an anonymous reviewer for pointing this out.




4 PROPERTIES OF BIPARTITE
RANK-SHATTER COEFFICIENTS

As discussed above, we havéF,m,n) < (m,n),
wheret(m, n) is the number of matrices ifo, 5, 1}™*"

that can be realized as a bipartite rank matrix. The number

¥(m,n) is strictly smaller thar3™", but is still very large;
in particular, ¢)(m,n) > gmax(mn), (To see this, note
that choosing any column vector i, 1 3,1}™ and repli-
cating it along the: columns or choosing any row vector
in {0, 3,1}™ and replicating it along thex rows results in

a matrix that does not contain a sub-matrix of any of the

forms shown in Table 1. The conclusion then follows from

Theorem 1 (Part 2).) For the bound of Theorem 2 to be

meaningful, one needs an upper bound-@&, m,n) that
is at least slightly smaller thari*/8(m+7) Below we pro-
vide one method for deriving upper boundsiqtF, m, n);
takingy* = {—1,0, +1}, we extend slightly the standard
shatter coefficients studied in classification){6-valued

function classes, and then derive an upper bound on the

bipartite rank-shatter coefficient§.F, m,n) of a class of
ranking functionsF in terms of the shatter coefficients of a
class ofy*-valued functions derived frorf.

Definition 4 (Shatter coefficient).Lety* = {—1,0,+1},

and let’H be a class ofy*-valued functions on¥’. Let
N € N. Define theV-th shatter coefficienof H, denoted
by s(H, N), as follows:

H (h(x1),. ..,

s(H,N) = h(xx)) | h € HH

max
xexN

Clearly,s(H, N) < 3" for all N. Next we define a series

of Y*-valued function classes derived from a given ranking
function class. Only the second function class is used in-et (x;,x}),...,

Proof. For anym,n € N, we havé
r(F,m,n)

{ {I{f(xLDf(x’)} * 5 = f<><’>}} ‘ fe f}‘

xEXm X EX"

- Lo 1 / ’ F
xeXm e xn H{ Focs =13 T 5L )= 0}] fef}'
= max {[ X“x]] ’fe]-‘}‘
xeX™M x'exn

IN

max
X, X/'exmxn

xlj,xéj)] ‘fé]:})

i
(7

= max { X1,X1), (xmn7 x/mn)> ’ f IS .7:"}‘
é,L/EXTILTL
= s(F,mn). a

Below we make use of the above result to derive a polyno-
mial upper bound on the bipartite rank-shatter coefficients
for the case of linear ranking functions. We note that the
same method can be used to establish similar upper bounds
for higher-order polynomial ranking functions and other al-
gebralcally well-behaved function classes.

Lemma 2. For d € N, let Fj,4) denote the class of linear
ranking functions oiR¢:

Finw = {fiR=R|f(x)=wx+b
forsomeweRd,beR}.
Then for allN € N,

8(Finy, N) < (2eN/d)".
Proof. We have,
Finw = {FiR < RI=Y" | fx,x') = sign(w-(x — X))
for somew € ]Rd} )

(xn,x)y) be anyN points inR¢ x R,

this section; the other two are needed in Section 5. Noteind consider the ‘dual’ weight space corresponding te

that we take 41 ifu>0
s|g|’(u) = 0 ifu=0
-1 ifu<O.

Definition 5 (Function classes)Let F be a class of real-
valued functions oit’. Define the following classes df -
valued functions derived froth:

1. F = { Frx=y"| f(x) = sign(f(x))
for somef € ]-'} )
92 F = {f: X x XY | f(x,x) = sign(f(x) — f(x'))
for somef € J-‘} 3)
5. F = {fi Xx=Y" | L) = sign(f(x) - /(2)
forsomefe]—",zeX} 4)

Theorem 4. LetF be a class of real-valued functions on
X, and letF be the class g¥*-valued functions o’ x X
defined by Eq. (3). Then for atk, n € N,

r(F,m,n) < s(F,mn).

R, Each point(x;, x/) defines a hyperplangg; — x/) in
this space; thév points thus give rise to an arrangement of
N hyperplanes iiR?. It is easily seen that the number of
sign patterngf(x1,x}),..., f(xx,x/y)) that can be real-
ized by functionsf € F is equal to the total number of
faces of this arrangement [11], which is at most [3]

d d d
7 N _ i N d
£ )(0) - (1) < oo
k=0i=d—k =0
Since theN points were arbitrary, the result follows. O

Theorem 5. For d € N, let Fj,4) denote the class of lin-
ear ranking functions ofR? (defined in Lemma 2 above).
Then for allm,n € N,

7(Fiin(a), m,n) < (2emn/d)?

Proof. This follows immediately from Theorem 4 and
Lemma 2. O
“We use the notatiofu,;] to denote a matrix whos@, j)'"

element isa;;. The dimensions of such a matrix should be clear
from context.
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Figure 1: A comparison of our uniform convergence bound with that of [9] for the class of linear ranking functiBns on
The plots are fod = 0.01 and show how the confidence interval widtlgiven by the two bounds varies with the sample
size M, for various values ofn/(m + n). In all cases where the bounds are meaningfut 0.5), our bound is tighter.

5 COMPARISON WITH BOUND OF The proof follows that of [9] and is omitted. We now
FREUND ET AL. compare the uniform convergence bound derived in Sec-

tion 3 with that of Freund et al. for a simple function

Freund et al. [9] recently derived a uniform convergenceclass for which the quantities involved in both bounds

bound for a quantity closely related to the AUC, namely the(namely, »(F, 2m, 2n) and s(F,2m), s(F,2n)) can be

ranking loss for the bipartite ranking problem. As pointedcharacterized exactly. Specifically, consider the function

out in [5], the bipartite ranking loss is equal to one m|nusc|a33]:|m (1) of linear ranking functions o, given by

the AUC; the uniform convergence bound of [9] therefore

implies a uniform convergence bound for the ASQ@\I- Finy = {f:R=R| f(z) =wz +0

though the result in [9] is given only for function classes for somew € R, b € R}.

considered by their RankBoost algorithm, their technique

is generally applicable. We state their result below, usingAlthough Fiin(1) is an infinite function class, it is easy to

our notation, for the general casee( function classes not Verify thatr(Fiin1), m,n) = 3 for all m,n € N. (To see

restricted to those considered by RankBoost), and then ofhis, note that for any set of. + n distinct points inR,

fer a comparison of our bound with theirs. As in [9], the One can obtain exactly three different ranking behaviours

result is given in the form of a confidence interfal. with functions inFji(1): one by settingv > 0, another by
settingw < 0, and the third by settingg = 0.) On the

Theorem 6 (Generalization of [9], Theorem 3)Let #  other hands(Fin(1), N) = 4N + 1 forall N > 2, since

be a class of real-valued functions oti, and lety = fnn(l) = |.n(1) (see Eq. (2)) and, as is easily verified, the

(y1,...,ym) € YM be any label sequence of length humber of sign patterns aN > 2 distinct points inR that

M € N. Letm be the number of positive labelsjnand ~ can be realized by functions #n(1) is 4N + 1. We thus

n = M — m the number of negative labels in Then for ~ getfrom our result (Corollary 1) that

any0 <6 <1, a )
Pyisy { sup | A(f:9) - A(f)] =

F€Fin(1y

Psxsyy{ sup ‘A(f;S) - A(f)‘ >
feF

2\/1115(? ,2m) +In (12) +2¢lns(fv,2n)+1n(lf)} < s,

¢8(m—|—n) (1n3+1n(§))} -

mn

m n and from the result of Freund et al. (Theorem 6) that

whereF is the class ofy*-valued functions ork’ defined A
Psylsy y{ sup ‘A(f;S) - A(f)‘ >

FE€Fin(1y

by Eq. (4).
®As in the AUC definition of [5], the ranking loss defined in \/

[9] does not account for ties; this is easily remedied.

5The result in [9] was stated in terms of the VC dimension,
but the basic result can be stated in terms of shatter coefficient
Due to our AUC definition which accounts for ties, the standardsrhe above bounds are plotted in Figure 1dor 0.01 and
shatter coefficients are replaced here with the extended shatter cyarious values ofn/(m + n). As can be seen, the bound
efficients defined above f@¢*-valued function classes. provided by our result is considerably tighter.

m n

In(8m + 1) + In (12) +2\/1n(8n+1)+1ﬂ(5)} <5



6 CONCLUSION & OPEN QUESTIONS
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and a grant from the ONR-TRECC program.

single change in the sample has limited effect:



Theorem 7 (McDiarmid, 1989).Let X1,..., Xy be in-  joint sequence(§X7g). Then for anye > 0 satisfying
dependent random variables wilfy, taking values inaset mne?/(m +n) > 2, we have
Ay, for eachk. Leto : (A1 x --- x Ax) —R be such that

¢(1’17~~~7$N) —

(5 Llye+oyLh— 7.’1/k,.’2k+]7...717 < k - QP A! €
( ! ! N)’ ¢ S ng)(lSyf’y{SLlp‘ (J7S) (J S)‘ 2}

Paisy— {30 (78 - A1) 2 ]
sup fer
ziEAi,z;CEAk

To see this, lef € F be a function for whichA(f%; ) —

P{[o(X1,..., Xn) = E{o(Xy, ..., Xn)} > ¢} A(f&)] > eif such a function exists, and Igt; be a fixed
< 22/ ThLack function in F otherwise. Then
Py csaisn s {s0p [407:5) - 4(7:5)| 2 5}
Theorem 8 (Devroye, 1991; Devroye et al., 1996, Theo- SxSxISv=v | e ‘ 2
rem 9.3).Under the conditions of Theorem 7, > Py g sy { (f2: 8 fg;g)‘ > %}
N
Var {¢(X1,..., X < iz > Pgsissy= { A(fs;8) — A(fs) Ze}ﬁ

{\/uf;;S) — A(f3)

€
S —
The following lemma establishes that a change in a single 2 }}
instance in a data sequence has a limited effect onthe AUC = Esx|sy=y {I{\A(fg,;S)—A(fg,)\ze} X
of a ranking function with respect to the data sequence: P & "
J P a A9 -aus)| <51} ©

The conditional probability inside can be bounded using
Chebyshev’s inequality (and Lemma 1):

P

S‘X‘SXﬂsYZE{
Lemma 3. Let f : X—R be a ranking function oit’ and
lety = (y1,...,yn) € YV be afinite label sequence. Let
m be the number of positive labelsjrandn the number of

negative labels iy. Letg : XN —R be defined as follows: Pz, sy s,y { )A(fé; S) = A(f3)| < %}
. = A ) e . Al £x. O
¢(X17 aXN) (fv((xhyl)v v(XNayN))) . . VarSX\S'X Sy =y {A(fS7S)}
Then for allx;, x}, € X, = 2/4
|p(x1,. .., XN) — G(X1, .., Xk—1, X, Xkp1 .-, Xn)| < ek,  Now, by Lemma 3 and Theorem 8, we have
wherec, = 1/mif y, = +1andc, = 1/nif yp = —1. Varg (s, sy—y {A(fg;é)}
< 1 14\2 1\2)  m+n
Proof. For eacht such thaty, = +1, we have = m(E) +"(ﬁ> = dmn
|p(x1, . XN) — D(X1, .-, Xko1, Xy Xhg1 - - -, XN)| This gives
P . € m+n 1
1 ng\sx,sy:g{‘A(fyS) —A(fs)| < 5} z =5 25
= — > (I{f(xk)>f(xg)} + I{f<xk> f<xj>})
{ryy=—1} whenevemmne? /(m + n) > 2. Thus, from Eq. (5) and the
1 definition of f, we have
—(I{f<x;>>f<xj>} + 2I{f(x;)—f(x3-)}))‘ . .
o P siovmu { sup A07:8) (1 9)] 2 5}
< —n

1
mn
Z §ESX\SY:E{I{\A(fé;s)ﬂ‘l(fy\ZE}}
1
m
= §PSX‘SY:£{

A(f3:8) - Af3)| = €}
The casey;, = —1 can be proved similarly. O 1
> Pecisy—y {3 (5 - A 2 ¢}
fer

We are now ready to give the main proof:

Proof (of Theorem 2)The proof is adapted from proofs of Step 2. Second symmetrization by permutations.

uniform convergence for the classification error rate giverLet I'j; be the set of all permutations of

in [2, 8]. It consists of four steps. {X4,... X, X, ,XM} that swap X, and X,

, o for all & in some subset ofl, ..., M}. In other words, for
Step 1. First symmetrization by a ghost sample. allo € Ty andk € {1,..., M}, eithero(X,) = Xy, in
For eachk € {1,...,M}, define the random variable which casay(Xk) X, ora(Xk) = X, in which case

X}, such thath,Xk are independent and identically dis- o(Xp) = Xy Denoteo(Sx) = (o(X1),...,0(Xn)),
tributed. LetSx = (Xi,..., Xy ), and denote by the  ando(Sx) = (0(X1),...,0(Xa)). Now, define



PJNM(FM){JSC»up‘ﬁf o(x), (7))) %
Br(Sx,5x) = {

) 1 < r(F,2m,2n)- buP Pooua)
— > ((I{f<xi>>f<xj>} + §I{f<xi>=f<xj>})
{iryi=+1} {jiy;=—1}

}
st

Step 4. McDiarmid’s inequality.

1
- (I{f<5<i)>f<f<j>} + §I{f(??i)=f(5<j)}>) - Notice that for an, x € X, we can write

Then clearly, sinceX, X, are i.i.d. for eachk, for any  Po~ury) {‘ﬁf((f(&),ff(é))‘ > E}

=2
o € I')y we have that the distribution of < €
~ PENM(HLWZI{XIW)E,C}) {‘/Bf(wvw)’ 2 5} 9
sup |B7(Six, 5x)|

feF whereW = (W1,..., W), W = (Wy,...,Wy) and
is the same as the distribution of W= Xk EWe=x
Xk, if Wi = Xk
Sx), (S ‘ .
fer Br(o(9x),0(5x)) Now, for anyf € F,
Therefore, using/(D) to denote the uniform distribu- By (11, (x50 {gf(w,@)} = 0,
tion over a discrete seb, we have the following (note o - .
that except where specified otherwise, all probabilities angince for alli : y; = +1and; : y; = -1,
expectations below are with respect to the distributio _ , _
D P ) ) P nE WinU ({x3,%;}), W ~U ({x;,%,}) {I{f(Wi)>f(Wj)} I{f(wi)>f(wj>}}
Sx Sx|Sy=y/ 1
~ = - I X X - I X X +
P{Sup Af:5) - 5} 1 (( TCHETIONIER VICHERIENIY
feF 2
{ ‘ﬂ (5x.5 )‘ . 6} (Lro> o0y = Lpo>£x03) +
= su , > =
Fepl TN = g (Treensreny = Lo reg) +
1 €
T EXF: P{;gg\ﬂﬂdsx% ‘ 5} (I{f<x1)>f<xj>}—I{f<xl>>f<xj>})>
o M
1 = 0,
R 2 E{I{S“pfef|5f (@(Sx),0(5x))|> 5}} o
ol and similarly,
_ 1 E _ ) - I = R O S
- E{ T ] ; I{supfe}—ﬁf(a(sx)ya(gx))Z;}} WiNM({x@in}),W,~Z/t(0{xj,xj}){ {f(W)=f(W;)} {f(W,l)_f(W])}}
o M = .

v
N

= E {Pmu(rm {sup ’ﬁf(U(SX),J(SX))‘ }} Also, it can be verified that for any € F, a change in
rer the value of a single random varialifé, can bring about a

} ] change of at most/m in the value of
Br(W, W)

for k : y, = +1, and a change of at mogtn for k : y, =
We wish to bound the quantity on the right hand side—1. Therefore, by McDiarmid's inequality (Theorem 7), it
above. From the definition of bipartite rank matrices (Def-follows that for anyf € 7,

< max, Py s[5/ (00.02)| 2
xM fer

x,XE

N ™

Step 3. Reduction to a finite class.

inition 2), it follows that for anyx,x € X, asf ranges Py R {‘5f(W,V~V) > E}
over F, the number of different random variables - 1Rk 2
< 96 2/Am(E)*+n(2)?)
‘ﬁf (0(5)7 O-(g)) — 2efmn62/8(m+n)

is at most the number of different bipartite rank matncesputtlng everything together, we get that

B(z,2z') that can be realized by functions if, where

z € X?™ containsx;,x; fori : y; = +1 andz’ € x2» PSX‘SY:g{sup ’A(f;S) fA(f)’ > e}

containsx;,x; for j : y; = —1. This number, by def- A

inition, cannot exceed(F, 2m, 2n) (see the definition of < 4r(F,2m,2n) e /BN
bipartite rank-shatter coefficients, Definition 3). Therefore, )

the supremum in the above probability is a maximum of ator mne?/(m +n) > 2. In the other casei.e, for
mostr(F,2m, 2n) random variables. Thus, by the union "7*"'¢ ?/(m + n) < 2, the bound is greater than one and
bound, we get for any, x € XM, therefore holds trivially. O



