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Abstract
The area under the ROC curve (AUC) has been
advocated as an evaluation criterion for the bi-
partite ranking problem. We study uniform con-
vergence properties of the AUC; in particular, we
derive a distribution-free uniform convergence
bound for the AUC which serves to bound the
expected accuracy of a learned ranking function
in terms of its empirical AUC on the training se-
quence from which it is learned. Our bound is ex-
pressed in terms of a new set of combinatorial pa-
rameters that we term thebipartite rank-shatter
coefficients; these play the same role in our result
as do the standard VC-dimension related shatter
coefficients (also known as the growth function)
in uniform convergence results for the classifica-
tion error rate. A comparison of our result with
a recent uniform convergence result derived by
Freund et al. [9] for a quantity closely related to
the AUC shows that the bound provided by our
result can be considerably tighter.

1 INTRODUCTION

In many learning problems, the goal is not simply to clas-
sify objects into one of a fixed number of classes; instead, a
rankingof objects is desired. This is the case, for example,
in information retrieval problems, where one is interested
in retrieving documents from some database that are ‘rele-
vant’ to a given query or topic. In such problems, one wants
to return to the user a list of documents that contains rele-
vant documents at the top and irrelevant documents at the
bottom; in other words, one wants a ranking of the docu-
ments such that relevant documents are ranked higher than
irrelevant documents.

The problem of ranking has been studied from a learning
perspective under a variety of settings [4, 10, 6, 9]. Here
we consider the setting in which objects come from two
categories, positive and negative; the learner is given exam-
ples of objects labeled as positive or negative, and the goal
is to learn a ranking in which positive objects are ranked

higher than negative ones. This captures, for example, the
information retrieval problem described above; in this case,
training examples consist of documents labeled as relevant
(positive) or irrelevant (negative). This form of ranking
problem corresponds to the ‘bipartite feedback’ case of [9];
we therefore refer to it as thebipartite ranking problem.

Formally, the setting of the bipartite ranking problem is
similar to that of the binary classification problem. In
both problems, there is an instance spaceX and a set
of two class labelsY = {−1,+1}. One is given
a finite sequence of labeled training examplesS =
((x1, y1), . . . , (xM , yM )) ∈ (X × Y)M , and the goal is to
learn a function based on this training sequence. However,
the form of the function to be learned in the two problems is
different. In classification, one seeks a binary-valued func-
tion h : X→Y that predicts the class of a new instance in
X . On the other hand, in ranking, one seeks areal-valued
functionf : X → R that induces a ranking overX ; an in-
stance that is assigned a higher value byf is ranked higher
than one that is assigned a lower value byf .

Thearea under the ROC curve(AUC) has recently gained
attention as an evaluation criterion for the bipartite ranking
problem [5]. Given a ranking functionf : X→R and a
data sequenceT = ((x1, y1), . . . , (xN , yN )) ∈ (X ×Y)N

containingm positive andn negative examples, the AUC
of f with respect toT , denotedÂ(f ;T ), can be expressed
as the following Wilcoxon-Mann-Whitney statistic [5]:

Â(f ;T ) =

1

mn

∑
{i:yi=+1}

∑
{j:yj=−1}

(
I{f(xi)>f(xj)} +

1

2
I{f(xi)=f(xj)}

)
, (1)

whereI{·} denotes the indicator variable whose value is
one if its argument is true and zero otherwise. The AUC of
f with respect toT is thus simply the fraction of positive-
negative pairs inT that are ranked correctly byf , assuming
that ties are broken uniformly at random.1

The AUC is an empirical quantity that evaluates a ranking
function with respect to a particular data sequence. What

1In [5], a slightly simpler form of the Wilcoxon-Mann-
Whitney statistic is used, which does not account for ties.



does the empirical AUC tell us about the expected perfor-
mance of a ranking function on future examples? This is
the question we consider. The question has two parts, both
of which are important for machine learning practice. First,
what can be said about the expected performance of a rank-
ing function based on its empirical AUC on an indepen-
dent test sequence? Second, what can be said about the
expected performance of a learned ranking function based
on its empirical AUC on the training sequence from which
it is learned? The first question is addressed in [1]; we ad-
dress the second question in this paper.

We start by defining the expected ranking accuracy of a
ranking function (analogous to the expected error rate of a
classification function) in Section 2. Section 3 contains our
uniform convergence result, which serves to bound the ex-
pected accuracy of a learned ranking function in terms of its
empirical AUC on a training sequence. Our uniform con-
vergence bound is expressed in terms of a new set of combi-
natorial parameters that we term the bipartite rank-shatter
coefficients; these play the same role in our result as do
the standard shatter coefficients (also known as the growth
function) in uniform convergence results for the classifica-
tion error rate. Properties of the bipartite rank-shatter coef-
ficients are discussed in Section 4. Section 5 compares our
result with a recent uniform convergence result derived by
Freund et al. [9] for a quantity closely related to the AUC.
We conclude with some open questions in Section 6.

2 EXPECTED RANKING ACCURACY

We begin by introducing some notation. As in classifica-
tion, we shall assume that all examples are drawn randomly
and independently according to some (unknown) underly-
ing distributionD overX ×Y. The notationD+1 andD−1

will be used to denote the class-conditional distributions
DX|Y =+1 andDX|Y =−1, respectively. We use an under-
line to denote a sequence,e.g., y ∈ YN to denote a se-
quence of elements inY. We shall find it convenient to de-
compose a data sequenceT = ((x1, y1), . . . , (xN , yN )) ∈
(X × Y)N into two components,TX = (x1, . . . ,xN ) ∈
XN andTY = (y1, . . . , yN ) ∈ YN . Several of our re-
sults will involve the conditional distributionDTX |TY =y

for some label sequencey = (y1, . . . , yN ) ∈ YN ; this
distribution is simplyDy1 × . . . × DyN

.2 As a final note
of convention, we useT ∈ (X × Y)N to denote a gen-
eral data sequence (e.g., an independent test sequence), and
S ∈ (X × Y)M to denote a training sequence.

2Note that, since the AUC of a ranking functionf with respect
to a data sequenceT ∈ (X × Y)N is independent of the actual
ordering of examples in the sequence, our results involving the
conditional distributionDTX |TY =y for some label sequencey =

(y1, . . . , yN ) ∈ YN depend only on the numberm of positive
labels iny and the numbern of negative labels iny. We choose to
state our results in terms of the distributionDTX |TY =y ≡ Dy1 ×
. . .×DyN only because this is more general thanDm

+1 ×Dn
−1.

Definition 1 (Expected ranking accuracy). Let f :
X→R be a ranking function onX . Define theexpected
ranking accuracy(or simply ranking accuracy) of f , de-
noted byA(f), as follows:

A(f) = EX∼D+1,X′∼D−1

{
I{f(X)>f(X′)} +

1

2
I{f(X)=f(X′)}

}
.

The ranking accuracyA(f) defined above is simply the
probability that an instance drawn randomly according to
D+1 will be ranked higher byf than an instance drawn
randomly according toD−1, assuming that ties are broken
uniformly at random. The following simple lemma shows
that the empirical AUC of a ranking functionf is an unbi-
ased estimator of the expected ranking accuracy off :

Lemma 1. Letf : X→R be a ranking function onX , and
let y = (y1, . . . , yN ) ∈ YN be a finite label sequence.
Then

ETX |TY =y

{
Â(f ;T )

}
= A(f) .

Proof. Let m be the number of positive labels iny, andn
the number of negative labels iny. Then from the definition
of empirical AUC (Eq. (1)) and linearity of expectation, we
have

ETX |TY =y

{
Â(f ;T )

}
=

1

mn

∑
{i:yi=+1}

∑
{j:yj=−1}

EXi∼D+1,Xj∼D−1

{
I{f(Xi)>f(Xj)}

+
1

2
I{f(Xi)=f(Xj)}

}
=

1

mn

∑
{i:yi=+1}

∑
{j:yj=−1}

A(f)

= A(f) . ut

3 UNIFORM CONVERGENCE BOUND

We are interested in bounding the probability that the em-
pirical AUC of a learned ranking functionfS with re-
spect to the (random) training sequenceS from which it is
learned will have a large deviation from its expected rank-
ing accuracy, when the functionfS is chosen from a pos-
sibly infinite function classF . The standard approach for
obtaining such bounds is via uniform convergence results.
In particular, we have for anyε > 0,

P
{∣∣∣Â(fS ;S)−A(fS)

∣∣∣ ≥ ε
}

≤ P

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
.

Therefore, to bound probabilities of the form on the left
hand side above, it is sufficient to derive a uniform conver-
gence result that bounds probabilities of the form on the
right hand side. Our uniform convergence result for the
AUC is expressed in terms of a new set of combinatorial
parameters, termed thebipartite rank-shatter coefficients,
that we define below.



Definition 2 (Bipartite rank matrix). Let f : X→R be
a ranking function onX , let m,n ∈ N, and let x =
(x1, . . . ,xm) ∈ Xm, x′ = (x′

1, . . . ,x
′
n) ∈ Xn. Define the

bipartite rank matrixof f with respect tox,x′, denoted by
Bf (x,x′), to be the matrix in{0, 1

2 , 1}
m×n whose(i, j)-th

element is given by[
Bf (x,x′)

]
ij

= I{f(xi)>f(x′j)} +
1

2
I{f(xi)=f(x′j)}

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Definition 3 (Bipartite rank-shatter coefficient). Let F
be a class of real-valued functions onX , and letm,n ∈ N.
Define the(m,n)-th bipartite rank-shatter coefficientofF ,
denoted byr(F ,m, n), as follows:

r(F ,m, n) = max
x∈Xm,x′∈Xn

∣∣{Bf (x,x′) | f ∈ F
}∣∣ .

Clearly, for finiteF , we haver(F ,m, n) ≤ |F| for all
m,n. In general,r(F ,m, n) ≤ 3mn for all m,n. In fact,
not all 3mn matrices in{0, 1

2 , 1}
m×n can be realized as

bipartite rank matrices. Therefore, we have

r(F ,m, n) ≤ ψ(m,n) ,

whereψ(m,n) is the number of matrices in{0, 1
2 , 1}

m×n

that can be realized as a bipartite rank matrix. The number
ψ(m,n) can be characterized in the following ways (proof
omitted due to lack of space):

Theorem 1. Let ψ(m,n) be the number of matrices in
{0, 1

2 , 1}
m×n that can be realized as a bipartite rank

matrixBf (x,x′) for somef : X→R, x ∈ Xm, x′ ∈ Xn.
Then

1. ψ(m,n) is equal to the number of complete mixed
acyclic (m,n)-bipartite graphs (where a mixed
graph is one which may contain both directed and
undirected edges, and where we define a cycle in such
a graph as a cycle that contains at least one directed
edge and in which all directed edges have the same
directionality along the cycle).

2. ψ(m,n) is equal to the number of matrices in
{0, 1

2 , 1}
m×n that do not contain a sub-matrix of any

of the forms shown in Table 1.

We discuss further properties of the bipartite rank-shatter
coefficients in Section 4; we first present below our uniform
convergence result in terms of these coefficients. The fol-
lowing can be viewed as the main result of this paper. We
note that our results are all distribution-free, in the sense
that they hold for any distributionD overX × Y.

Table 1: Sub-matrices that cannot appear in a bipartite
rank matrix.[
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0
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1
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½
0
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1
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1
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½
1
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1
0

0
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½
½

0
1

] [
1
0

½
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½
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½

½
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½
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½
½

½
1

] [
½
0

½
½

] [
0
1

1
0

] [
½
1

1
0

] [
0
1

½
0

] [
0
1

1
½

] [
0
½

1
0

][
½
1

½
0

] [
½
1

1
½

] [
½
½

1
0

] [
0
1

½
½

] [
0
½

½
0

] [
0
½

1
½

] [
0
½

½
½

] [
½
½

1
½

] [
½
½

½
0

] [
½
1

½
½

]

Theorem 2. LetF be a class of real-valued functions on
X , and lety = (y1, . . . , yM ) ∈ YM be any label sequence
of lengthM ∈ N. Letm be the number of positive labels
in y, andn = M −m the number of negative labels iny.
Then for anyε > 0,

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
≤ 4 · r(F , 2m, 2n) · e−mnε2/8(m+n) .

The proof is adapted from uniform convergence proofs for
the classification error rate (see, for example, [2, 8]). The
main difference is that since the AUC cannot be expressed
as a sum of independent random variables, more powerful
inequalities are required. In particular, a result of Devroye
[7] is required to bound the variance of the AUC that ap-
pears after an application of Chebyshev’s inequality, and
McDiarmid’s inequality [12] is required in the final step of
the proof where Hoeffding’s inequality sufficed in the case
of classification. Details are given in Appendix A.

We note that the result of Theorem 2 can be strengthened
so that the conditioning is only on the numbersm andn of
positive and negative labels, and not on the specific label
vectory.3 From Theorem 2, we can derive a confidence
interval interpretation of the bound as follows:

Corollary 1. LetF be a class of real-valued functions on
X , and lety = (y1, . . . , yM ) ∈ YM be any label sequence
of lengthM ∈ N. Letm be the number of positive labels
in y, andn = M −m the number of negative labels iny.
Then for any0 < δ ≤ 1,

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥√

8(m+ n)
(
ln r(F , 2m, 2n) + ln

(
4
δ

))
mn

}
≤ δ .

Proof. This follows directly from Theorem 2 by setting4 ·
r(F , 2m, 2n) · e−mnε2/8(m+n) = δ and solving forε. ut

As in the case of the large deviation bound of [1], the con-
fidence interval above can be generalized to remove the
conditioning on the label vector completely (we note that
Theorem 2 cannot be generalized in this manner):

Theorem 3. LetF be a class of real-valued functions on
X , and letM ∈ N. Then for any0 < δ ≤ 1,

PS∼DM

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥√

8
(
ln r (F , 2ρ(SY )M, 2(1− ρ(SY ))M) + ln

(
4
δ

))
ρ(SY )(1− ρ(SY ))M

}
≤ δ ,

whereρ(SY ) denotes the proportion of positive labels in
SY .

3Our thanks to an anonymous reviewer for pointing this out.



4 PROPERTIES OF BIPARTITE
RANK-SHATTER COEFFICIENTS

As discussed above, we haver(F ,m, n) ≤ ψ(m,n),
whereψ(m,n) is the number of matrices in{0, 1

2 , 1}
m×n

that can be realized as a bipartite rank matrix. The number
ψ(m,n) is strictly smaller than3mn, but is still very large;
in particular,ψ(m,n) ≥ 3max(m,n). (To see this, note
that choosing any column vector in{0, 1

2 , 1}
m and repli-

cating it along then columns or choosing any row vector
in {0, 1

2 , 1}
n and replicating it along them rows results in

a matrix that does not contain a sub-matrix of any of the
forms shown in Table 1. The conclusion then follows from
Theorem 1 (Part 2).) For the bound of Theorem 2 to be
meaningful, one needs an upper bound onr(F ,m, n) that
is at least slightly smaller thanemn/8(m+n). Below we pro-
vide one method for deriving upper bounds onr(F ,m, n);
takingY∗ = {−1, 0,+1}, we extend slightly the standard
shatter coefficients studied in classification toY∗-valued
function classes, and then derive an upper bound on the
bipartite rank-shatter coefficientsr(F ,m, n) of a class of
ranking functionsF in terms of the shatter coefficients of a
class ofY∗-valued functions derived fromF .

Definition 4 (Shatter coefficient).LetY∗ = {−1, 0,+1},
and letH be a class ofY∗-valued functions onX . Let
N ∈ N. Define theN -th shatter coefficientofH, denoted
bys(H, N), as follows:

s(H, N) = max
x∈XN

∣∣∣{ (h(x1), . . . , h(xN )) | h ∈ H
}∣∣∣ .

Clearly,s(H, N) ≤ 3N for all N . Next we define a series
of Y∗-valued function classes derived from a given ranking
function class. Only the second function class is used in
this section; the other two are needed in Section 5. Note
that we take

sign(u) =

 +1 if u > 0
0 if u = 0

−1 if u < 0 .

Definition 5 (Function classes).LetF be a class of real-
valued functions onX . Define the following classes ofY∗-
valued functions derived fromF :

1 . F̄ =
{
f̄ : X→Y∗ | f̄(x) = sign(f(x))

for somef ∈ F
}

(2)

2 . F̃ =
{
f̃ : X × X→Y∗ | f̃(x,x′) = sign(f(x)− f(x′))

for somef ∈ F
}

(3)

3 . F̌ =
{
f̌z : X→Y∗ | f̌z(x) = sign(f(x)− f(z))

for somef ∈ F , z ∈ X
}

(4)

Theorem 4. LetF be a class of real-valued functions on
X , and letF̃ be the class ofY∗-valued functions onX ×X
defined by Eq. (3). Then for allm,n ∈ N,

r(F ,m, n) ≤ s(F̃ ,mn) .

Proof. For anym,n ∈ N, we have4

r(F ,m, n)

= max
x∈Xm,x′∈Xn

∣∣∣∣{[I{f(xi)>f(x′j)} +
1

2
I{f(xi)=f(x′j)}

] ∣∣∣∣ f ∈ F}∣∣∣∣
= max

x∈Xm,x′∈Xn

∣∣∣∣{[I{f̃(xi,x′j)=+1} +
1

2
I{f̃(xi,x′j)=0}

] ∣∣∣ f̃ ∈ F̃ }∣∣∣∣
= max

x∈Xm,x′∈Xn

∣∣∣{[f̃(xi,x
′
j)
] ∣∣∣ f̃ ∈ F̃ }∣∣∣

≤ max
X,X′∈Xm×n

∣∣∣{[f̃(xij ,x
′
ij)
] ∣∣∣ f̃ ∈ F̃ }∣∣∣

= max
x,x′∈Xmn

∣∣∣{(f̃(x1,x
′
1), . . . , f̃(xmn,x

′
mn)

) ∣∣∣ f̃ ∈ F̃ }∣∣∣
= s(F̃ ,mn) . ut

Below we make use of the above result to derive a polyno-
mial upper bound on the bipartite rank-shatter coefficients
for the case of linear ranking functions. We note that the
same method can be used to establish similar upper bounds
for higher-order polynomial ranking functions and other al-
gebraically well-behaved function classes.

Lemma 2. For d ∈ N, letFlin(d) denote the class of linear
ranking functions onRd:

Flin(d) =
{
f : Rd→R | f(x) = w·x + b

for somew ∈ Rd, b ∈ R
}
.

Then for allN ∈ N,

s(F̃lin(d), N) ≤ (2eN/d)d.

Proof. We have,

F̃lin(d) =
{
f̃ : Rd × Rd→Y∗ | f̃(x,x′) = sign(w·(x− x′))

for somew ∈ Rd
}
.

Let (x1,x′
1), . . . , (xN ,x′

N ) be anyN points inRd × Rd,
and consider the ‘dual’ weight space corresponding tow ∈
Rd. Each point(xi,x′

i) defines a hyperplane(xi − x′
i) in

this space; theN points thus give rise to an arrangement of
N hyperplanes inRd. It is easily seen that the number of
sign patterns(f̃(x1,x′

1), . . . , f̃(xN ,x′
N )) that can be real-

ized by functionsf̃ ∈ F̃ is equal to the total number of
faces of this arrangement [11], which is at most [3]

d∑
k=0

d∑
i=d−k

(
i

d− k

)(
N

i

)
=

d∑
i=0

2i

(
N

i

)
≤ (2eN/d)d .

Since theN points were arbitrary, the result follows. ut

Theorem 5. For d ∈ N, letFlin(d) denote the class of lin-
ear ranking functions onRd (defined in Lemma 2 above).
Then for allm,n ∈ N,

r(Flin(d),m, n) ≤ (2emn/d)d.

Proof. This follows immediately from Theorem 4 and
Lemma 2. ut

4We use the notation[aij ] to denote a matrix whose(i, j)th

element isaij . The dimensions of such a matrix should be clear
from context.



Figure 1: A comparison of our uniform convergence bound with that of [9] for the class of linear ranking functions onR.
The plots are forδ = 0.01 and show how the confidence interval widthε given by the two bounds varies with the sample
sizeM , for various values ofm/(m+ n). In all cases where the bounds are meaningful (ε < 0.5), our bound is tighter.

5 COMPARISON WITH BOUND OF
FREUND ET AL.

Freund et al. [9] recently derived a uniform convergence
bound for a quantity closely related to the AUC, namely the
ranking loss for the bipartite ranking problem. As pointed
out in [5], the bipartite ranking loss is equal to one minus
the AUC; the uniform convergence bound of [9] therefore
implies a uniform convergence bound for the AUC.5 Al-
though the result in [9] is given only for function classes
considered by their RankBoost algorithm, their technique
is generally applicable. We state their result below, using
our notation, for the general case (i.e., function classes not
restricted to those considered by RankBoost), and then of-
fer a comparison of our bound with theirs. As in [9], the
result is given in the form of a confidence interval.6

Theorem 6 (Generalization of [9], Theorem 3).Let F
be a class of real-valued functions onX , and let y =
(y1, . . . , yM ) ∈ YM be any label sequence of length
M ∈ N. Letm be the number of positive labels iny, and
n = M −m the number of negative labels iny. Then for
any0 < δ ≤ 1,

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥

2

√
ln s(F̌ , 2m) + ln

(
12
δ

)
m

+ 2

√
ln s(F̌ , 2n) + ln

(
12
δ

)
n

}
≤ δ ,

whereF̌ is the class ofY∗-valued functions onX defined
by Eq. (4).

5As in the AUC definition of [5], the ranking loss defined in
[9] does not account for ties; this is easily remedied.

6The result in [9] was stated in terms of the VC dimension,
but the basic result can be stated in terms of shatter coefficients.
Due to our AUC definition which accounts for ties, the standard
shatter coefficients are replaced here with the extended shatter co-
efficients defined above forY∗-valued function classes.

The proof follows that of [9] and is omitted. We now
compare the uniform convergence bound derived in Sec-
tion 3 with that of Freund et al. for a simple function
class for which the quantities involved in both bounds
(namely, r(F , 2m, 2n) and s(F̌ , 2m), s(F̌ , 2n)) can be
characterized exactly. Specifically, consider the function
classFlin(1) of linear ranking functions onR, given by

Flin(1) = {f : R→R | f(x) = wx+ b

for somew ∈ R, b ∈ R} .

AlthoughFlin(1) is an infinite function class, it is easy to
verify that r(Flin(1),m, n) = 3 for all m,n ∈ N. (To see
this, note that for any set ofm + n distinct points inR,
one can obtain exactly three different ranking behaviours
with functions inFlin(1): one by settingw > 0, another by
settingw < 0, and the third by settingw = 0.) On the
other hand,s(F̌lin(1), N) = 4N + 1 for all N ≥ 2, since
F̌lin(1) = F̄lin(1) (see Eq. (2)) and, as is easily verified, the
number of sign patterns onN ≥ 2 distinct points inR that
can be realized by functions in̄Flin(1) is 4N + 1. We thus
get from our result (Corollary 1) that

PSX |SY =y

{
sup

f∈Flin(1)

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥√

8(m+ n)
(
ln 3 + ln

(
4
δ

))
mn

}
≤ δ ,

and from the result of Freund et al. (Theorem 6) that

PSX |SY =y

{
sup

f∈Flin(1)

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥

2

√
ln(8m+ 1) + ln

(
12
δ

)
m

+ 2

√
ln(8n+ 1) + ln

(
12
δ

)
n

}
≤ δ .

The above bounds are plotted in Figure 1 forδ = 0.01 and
various values ofm/(m + n). As can be seen, the bound
provided by our result is considerably tighter.



6 CONCLUSION & OPEN QUESTIONS

We have derived a distribution-free uniform convergence
bound for the area under the ROC curve (AUC), a quan-
tity used as an evaluation criterion for the bipartite rank-
ing problem. Our bound is expressed in terms of a new
set of combinatorial parameters that we have termed the
bipartite rank-shatter coefficients. These coefficients de-
fine a new measure of complexity for real-valued function
classes and play the same role in our result as do the stan-
dard VC-dimension related shatter coefficients in uniform
convergence results for the classification error rate.

For the case of linear ranking functions onR, for which
we could compute the bipartite rank-shatter coefficients ex-
actly, we have shown that our uniform convergence bound
is considerably tighter than a recent bound of Freund et al.
[9], which is expressed directly in terms of standard shatter
coefficients from results for classification. This suggests
that the bipartite rank-shatter coefficients we have intro-
duced may be a more appropriate complexity measure for
studying the bipartite ranking problem. However, in or-
der to take advantage of our results, one needs to be able
to characterize these coefficients for the class of ranking
functions of interest. The biggest open question that arises
from our study is, for what other function classesF can
the bipartite rank-shatter coefficientsr(F ,m, n) be char-
acterized? We have derived in Theorem 4 a general upper
bound on the bipartite rank-shatter coefficients of a func-
tion classF in terms of the standard shatter coefficients of
the function class̃F (see Eq. (3)); this allows us to estab-
lish a polynomial upper bound on the bipartite rank-shatter
coefficients for linear ranking functions onRd and other
algebraically well-behaved function classes. However, this
upper bound is inherently loose (see proof of Theorem 4).
Is it possible to find tighter upper bounds onr(F ,m, n)
than that given by Theorem 4?

Our study also raises several other interesting questions.
First, can we establish analogous complexity measures and
generalization bounds for other forms of ranking problems
(i.e., other than bipartite)? Second, do there exist data-
dependent bounds for ranking, analogous to existing mar-
gin bounds for classification? Finally, it also remains an
open question whether tighter generalization bounds for the
AUC can be derived using different proof techniques.
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A Proof of Theorem 2

Our proof makes use of the following two results [12, 7]
that bound the probability of a large deviation and the vari-
ance, respectively, of any function of a sample for which a
single change in the sample has limited effect:



Theorem 7 (McDiarmid, 1989).Let X1, . . . , XN be in-
dependent random variables withXk taking values in a set
Ak for eachk. Letφ : (A1 × · · · ×AN )→R be such that

sup
xi∈Ai,x′

k
∈Ak

∣∣∣φ(x1, . . . , xN ) −
φ(x1, . . . , xk−1, x

′
k, xk+1, . . . , xN )

∣∣∣ ≤ ck .

Then for anyε > 0,

P {|φ(X1, . . . , XN )−E{φ(X1, . . . , XN )}| ≥ ε}

≤ 2e−2ε2/
∑N

k=1 c2k .

Theorem 8 (Devroye, 1991; Devroye et al., 1996, Theo-
rem 9.3).Under the conditions of Theorem 7,

Var {φ(X1, . . . , XN )} ≤ 1

4

N∑
k=1

c2k .

The following lemma establishes that a change in a single
instance in a data sequence has a limited effect on the AUC
of a ranking function with respect to the data sequence:

Lemma 3. Let f : X→R be a ranking function onX and
let y = (y1, . . . , yN ) ∈ YN be a finite label sequence. Let
m be the number of positive labels iny andn the number of
negative labels iny. Letφ : XN→R be defined as follows:

φ (x1, . . . ,xN ) = Â (f ; ((x1, y1), . . . , (xN , yN ))) .

Then for allxi,x′
k ∈ X ,∣∣φ(x1, . . . ,xN )− φ(x1, . . . ,xk−1,x

′
k,xk+1 . . . ,xN )

∣∣ ≤ ck ,

whereck = 1/m if yk = +1 andck = 1/n if yk = −1.

Proof. For eachk such thatyk = +1, we have∣∣φ(x1, . . . ,xN )− φ(x1, . . . ,xk−1,x
′
k,xk+1 . . . ,xN )

∣∣
=

1

mn

∣∣∣∣∣ ∑
{j:yj=−1}

((
I{f(xk)>f(xj)} +

1

2
I{f(xk)=f(xj)}

)

−
(
I{f(x′

k
)>f(xj)} +

1

2
I{f(x′

k
)=f(xj)}

))∣∣∣∣∣
≤ 1

mn
n

=
1

m
.

The caseyk = −1 can be proved similarly. ut

We are now ready to give the main proof:

Proof (of Theorem 2).The proof is adapted from proofs of
uniform convergence for the classification error rate given
in [2, 8]. It consists of four steps.

Step 1. First symmetrization by a ghost sample.

For eachk ∈ {1, . . . ,M}, define the random variable
X̃k such thatXk, X̃k are independent and identically dis-
tributed. LetS̃X = (X̃1, . . . , X̃M ), and denote bỹS the

joint sequence(S̃X , y). Then for anyε > 0 satisfying
mnε2/(m+ n) ≥ 2, we have

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
≤ 2PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
.

To see this, letf∗S ∈ F be a function for which|Â(f∗S ;S)−
A(f∗S)| ≥ ε if such a function exists, and letf∗S be a fixed
function inF otherwise. Then

PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
≥ PSX S̃X |SY =y

{∣∣∣Â(f∗S ;S)− Â(f∗S ; S̃)
∣∣∣ ≥ ε

2

}
≥ PSX S̃X |SY =y

{{∣∣∣Â(f∗S ;S)−A(f∗S)
∣∣∣ ≥ ε

}
∩{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}}
= ESX |SY =y

{
I{|Â(f∗

S
;S)−A(f∗

S
)|≥ε}×

PS̃X |SX ,SY =y

{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}}
. (5)

The conditional probability inside can be bounded using
Chebyshev’s inequality (and Lemma 1):

PS̃X |SX ,SY =y

{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}
≥ 1−

VarS̃X |SX ,SY =y

{
Â(f∗S ; S̃)

}
ε2/4

.

Now, by Lemma 3 and Theorem 8, we have

VarS̃X |SX ,SY =y

{
Â(f∗S ; S̃)

}
≤ 1

4

(
m
( 1

m

)2

+ n
( 1

n

)2
)

=
m+ n

4mn
.

This gives
PS̃X |SX ,SY =y

{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}
≥ 1−m+ n

mnε2
≥ 1

2
,

whenevermnε2/(m+ n) ≥ 2. Thus, from Eq. (5) and the
definition off∗S , we have

PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
≥ 1

2
ESX |SY =y

{
I{|Â(f∗

S
;S)−A(f∗

S
)|≥ε}

}
=

1

2
PSX |SY =y

{∣∣∣Â(f∗S ;S)−A(f∗S)
∣∣∣ ≥ ε

}
≥ 1

2
PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
.

Step 2. Second symmetrization by permutations.

Let ΓM be the set of all permutations of
{X1, . . . , XM , X̃1, . . . , X̃M} that swap Xk and X̃k,
for all k in some subset of{1, . . . ,M}. In other words, for
all σ ∈ ΓM andk ∈ {1, . . . ,M}, eitherσ(Xk) = Xk, in
which caseσ(X̃k) = X̃k, or σ(Xk) = X̃k, in which case
σ(X̃k) = Xk. Denoteσ(SX) = (σ(X1), . . . , σ(XM )),
andσ(S̃X) = (σ(X̃1), . . . , σ(X̃M )). Now, define



βf (SX , S̃X) ≡
1

mn

∑
{i:yi=+1}

∑
{j:yj=−1}

((
I{f(Xi)>f(Xj)} +

1

2
I{f(Xi)=f(Xj)}

)
−
(
I{f(X̃i)>f(X̃j)} +

1

2
I{f(X̃i)=f(X̃j)}

))
.

Then clearly, sinceXk, X̃k are i.i.d. for eachk, for any
σ ∈ ΓM we have that the distribution of

sup
f∈F

∣∣∣βf (SX , S̃X)
∣∣∣

is the same as the distribution of

sup
f∈F

∣∣∣βf (σ(SX), σ(S̃X))
∣∣∣ .

Therefore, usingU(D) to denote the uniform distribu-
tion over a discrete setD, we have the following (note
that except where specified otherwise, all probabilities and
expectations below are with respect to the distribution
DSX S̃X |SY =y):

P

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
= P

{
sup
f∈F

∣∣∣βf (SX , S̃X)
∣∣∣ ≥ ε

2

}
=

1

|ΓM |
∑

σ∈ΓM

P

{
sup
f∈F

∣∣∣βf (σ(SX), σ(S̃X))
∣∣∣ ≥ ε

2

}
=

1

|ΓM |
∑

σ∈ΓM

E
{
I{supf∈F |βf (σ(SX ),σ(S̃X ))|≥ ε

2}
}

= E

 1

|ΓM |
∑

σ∈ΓM

I{supf∈F |βf (σ(SX ),σ(S̃X ))|≥ ε
2}


= E

{
Pσ∼U(ΓM )

{
sup
f∈F

∣∣∣βf (σ(SX), σ(S̃X))
∣∣∣ ≥ ε

2

}}
≤ max

x,x̃∈XM
Pσ∼U(ΓM )

{
sup
f∈F

∣∣∣βf (σ(x), σ(x̃))
∣∣∣ ≥ ε

2

}
.

Step 3. Reduction to a finite class.

We wish to bound the quantity on the right hand side
above. From the definition of bipartite rank matrices (Def-
inition 2), it follows that for anyx, x̃ ∈ XM , asf ranges
overF , the number of different random variables∣∣∣βf (σ(x), σ(x̃))

∣∣∣
is at most the number of different bipartite rank matrices
Bf (z, z′) that can be realized by functions inF , where
z ∈ X 2m containsxi, x̃i for i : yi = +1 andz′ ∈ X 2n

containsxj , x̃j for j : yj = −1. This number, by def-
inition, cannot exceedr(F , 2m, 2n) (see the definition of
bipartite rank-shatter coefficients, Definition 3). Therefore,
the supremum in the above probability is a maximum of at
mostr(F , 2m, 2n) random variables. Thus, by the union
bound, we get for anyx, x̃ ∈ XM ,

Pσ∼U(ΓM )

{
sup
f∈F

∣∣∣βf (σ(x), σ(x̃))
∣∣∣ ≥ ε

2

}
≤ r(F , 2m, 2n) · sup

f∈F
Pσ∼U(ΓM )

{∣∣∣βf (σ(x), σ(x̃))
∣∣∣ ≥ ε

2

}
.

Step 4. McDiarmid’s inequality.

Notice that for anyx, x̃ ∈ XM , we can write

Pσ∼U(ΓM )

{∣∣∣βf (σ(x), σ(x̃))
∣∣∣ ≥ ε

2

}
= PW∼U(

∏M
k=1{xk,x̃k})

{∣∣∣βf (W, W̃ )
∣∣∣ ≥ ε

2

}
,

whereW = (W1, . . . ,WM ), W̃ = (W̃1, . . . , W̃M ) and

W̃k =

{
x̃k, if Wk = xk

xk, if Wk = x̃k
.

Now, for anyf ∈ F ,

EW∼U(
∏M

k=1{xk,x̃k})

{
βf (W, W̃ )

}
= 0 ,

since for alli : yi = +1 andj : yj = −1,

EWi∼U({xi,x̃i}),Wj∼U({xj ,x̃j})

{
I{f(Wi)>f(Wj)} − I{f(W̃i)>f(W̃j)}

}
=

1

4

((
I{f(xi)>f(xj)} − I{f(x̃i)>f(x̃j)}

)
+(

I{f(x̃i)>f(xj)} − I{f(xi)>f(x̃j)}
)

+(
I{f(xi)>f(x̃j)} − I{f(x̃i)>f(xj)}

)
+(

I{f(x̃i)>f(x̃j)} − I{f(xi)>f(xj)}
))

= 0 ,

and similarly,

EWi∼U({xi,x̃i}),Wj∼U({xj ,x̃j})

{
I{f(Wi)=f(Wj)} − I{f(W̃i)=f(W̃j)}

}
= 0 .

Also, it can be verified that for anyf ∈ F , a change in
the value of a single random variableWk can bring about a
change of at most2/m in the value of

βf (W, W̃ )

for k : yk = +1, and a change of at most2/n for k : yk =
−1. Therefore, by McDiarmid’s inequality (Theorem 7), it
follows that for anyf ∈ F ,

PW∼U(
∏M

k=1{xk,x̃k})

{∣∣∣βf (W, W̃ )
∣∣∣ ≥ ε

2

}
≤ 2e−2ε2/4(m( 2

m
)2+n( 2

n
)2)

= 2e−mnε2/8(m+n) .

Putting everything together, we get that

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
≤ 4 · r(F , 2m, 2n) · e−mnε2/8(m+n) ,

for mnε2/(m + n) ≥ 2. In the other case,i.e., for
mnε2/(m + n) < 2, the bound is greater than one and
therefore holds trivially. ut


