
Nonlinear Dimensionality Reduction by Semidefinite
Programming and Kernel Matrix Factorization

Kilian Q. Weinberger, Benjamin D. Packer, and Lawrence K. Saul∗

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104-6389

{kilianw,lsaul,bpacker}@seas.upenn.edu

Abstract

We describe an algorithm for nonlinear di-
mensionality reduction based on semidefinite
programming and kernel matrix factoriza-
tion. The algorithm learns a kernel matrix
for high dimensional data that lies on or near
a low dimensional manifold. In earlier work,
the kernel matrix was learned by maximizing
the variance in feature space while preserv-
ing the distances and angles between near-
est neighbors. In this paper, adapting re-
cent ideas from semi-supervised learning on
graphs, we show that the full kernel matrix
can be very well approximated by a product
of smaller matrices. Representing the ker-
nel matrix in this way, we can reformulate
the semidefinite program in terms of a much
smaller submatrix of inner products between
randomly chosen landmarks. The new frame-
work leads to order-of-magnitude reductions
in computation time and makes it possible
to study much larger problems in manifold
learning.

1 Introduction

A large family of graph-based algorithms has recently
emerged for analyzing high dimensional data that
lies or or near a low dimensional manifold [2, 5, 8,
13, 19, 21, 25]. These algorithms derive low dimen-
sional embeddings from the top or bottom eigenvec-
tors of specially constructed matrices. Either directly
or indirectly, these matrices can be related to ker-
nel matrices of inner products in a nonlinear feature
space [9, 15, 22, 23]. These algorithms can thus be
viewed as kernel methods with feature spaces that “un-
fold” the manifold from which the data was sampled.

∗This work was supported by NSF Award 0238323.

In recent work [21, 22], we introduced Semidefinite
Embedding (SDE), an algorithm for manifold learning
based on semidefinite programming [20]. SDE learns
a kernel matrix by maximizing the variance in fea-
ture space while preserving the distances and angles
between nearest neighbors. It has several interesting
properties: the main optimization is convex and guar-
anteed to preserve certain aspects of the local geome-
try; the method always yields a semipositive definite
kernel matrix; the eigenspectrum of the kernel matrix
provides an estimate of the underlying manifold’s di-
mensionality; also, the method does not rely on esti-
mating geodesic distances between faraway points on
the manifold. This particular combination of advan-
tages appears unique to SDE.

The main disadvantage of SDE, relative to other al-
gorithms for manifold learning, is the time required
to solve large problems in semidefinite programming.
Earlier work in SDE was limited to data sets with
n≈2000 examples, and problems of that size typically
required several hours of computation on a mid-range
desktop computer.

In this paper, we describe a new framework that has
allowed us to reproduce our original results in a small
fraction of this time, as well as to study much larger
problems in manifold learning. We start by showing
that for well-sampled manifolds, the entire kernel ma-
trix can be very accurately reconstructed from a much
smaller submatrix of inner products between randomly
chosen landmarks. In particular, letting K denote the
full n×n kernel matrix, we can write:

K ≈ QLQT , (1)

where L is the m×m submatrix of inner products be-
tween landmarks (with m�n) and Q is an n×m linear
transformation derived from solving a sparse set of lin-
ear equations. The factorization in eq. (1) enables us
to reformulate the semidefinite program in terms of the
much smaller matrix L, yielding order-of-magnitude
reductions in computation time.

The framework in this paper has several interesting
connections to previous work in manifold learning
and kernel methods. Landmark methods were orig-
inally developed to accelerate the multidimensional
scaling procedure in Isomap [7]; they were subse-
quently applied to the fast embedding of sparse sim-
ilarity graphs [11]. Intuitively, the methods in these
papers are based on the idea of triangulation—that is,
locating points in a low dimensional space based on
their distances to a small set of landmarks. This idea
can also be viewed as an application of the Nyström
method [24, 12], which is a particular way of extrapo-
lating a full kernel matrix from one of its sub-blocks.
It is worth emphasizing that the use of landmarks in
this paper is not based on this same intuition. SDE
does not directly estimate geodesic distances between
faraway inputs on the manifold, as in Isomap. As op-
posed to the Nyström method, our approach is better
described as an adaptation of recent ideas for semi-
supervised learning on graphs [1, 16, 18, 26, 27]. Our
approach is somewhat novel in that we use these ideas
not for transductive inference, but for computational
savings in a purely unsupervised setting. To manage
the many constraints that appear in our semidefinite
programming problems, we have also adapted certain
ideas from the large-scale training of support vector
machines [6].

The paper is organized as follows. In section 2, we re-
view our earlier work on manifold learning by semidefi-
nite programming. In section 3, we investigate the ker-
nel matrix factorization in eq. (1), deriving the linear
transformation that reconstructs other examples from
landmarks, and showing how it simplifies the semidef-
inite program for manifold learning. Section 4 gives
experimental results on data sets of images and text.
Finally, we conclude in section 5.

2 Semidefinite Embedding

We briefly review the algorithm for SDE; more de-
tails are given in previous work [21, 22]. As in-
put, the algorithm takes high dimensional vectors
{~x1, ~x2, . . . , ~xn}; as output, it produces low dimen-
sional vectors {~y1, ~y2, . . . , ~yn}. The inputs ~xi ∈ RD are
assumed to lie on or near a manifold that can be em-
bedded in d dimensions, where typically d � D. The
goal of the algorithm is to estimate the dimensional-
ity d and to output a faithful embedding that reveals
the structure of the manifold.

The main idea behind SDE has been aptly described
as “maximum variance unfolding” [17]. The algorithm
attempts to maximize the variance of its embedding,
subject to the constraint that distances and angles
between nearby inputs are preserved. The resulting

transformation from inputs to outputs thus looks lo-
cally like a rotation plus translation—that is, it rep-
resents an isometry. To picture such a transformation
from D=3 to d=2 dimensions, one can imagine a flag
being unfurled by pulling on its four corners.

The first step of the algorithm is to compute the k-
nearest neighbors of each input. A neighborhood-
indicator matrix is defined as ηij =1 if and only if the
inputs ~xi and ~xj are k-nearest neighbors or if there ex-
ists another input of which both are k-nearest neigh-
bors; otherwise ηij = 0. The constraints to preserve
distances and angles between k-nearest neighbors can
then be written as:

||~yi − ~yj ||2 = ||~xi − ~xj ||2 , (2)

for all (i, j) such that ηij =1. To eliminate a transla-
tional degree of freedom in the embedding, the outputs
are also constrained to be centered on the origin:∑

i

~yi = ~0. (3)

Finally, the algorithm attempts to “unfold” the inputs
by maximizing the variance

var(~y) =
∑

i

||~yi||2 (4)

while preserving local distances and angles, as in
eq. (2). Maximizing the variance of the embedding
turns out to be a useful surrogate for minimizing its di-
mensionality (which is computationally less tractable).

The above optimization can be formulated as an
instance of semidefinite programming [20]. Let
Kij = ~yi · ~yj denote the Gram (or kernel) matrix of the
outputs. As shown in earlier work [21, 22], eqs. (2–4)
can be written entirely in terms of the elements of this
matrix. We can then learn the kernel matrix K by
solving the following semidefinite program.

Maximize trace(K) subject to:
1) K � 0.
2) ΣijKij = 0.
3) For all (i, j) such that ηij =1,

Kii − 2Kij + Kjj = ||~xi − ~xj ||2.

As in kernel PCA [15], the embedding is derived from
the eigenvalues and eigenvectors of the kernel matrix;
in particular, the algorithm outputs yαi =

√
λαuαi,

where λα and uα are the top d eigenvalues and eigen-
vectors. The dimensionality of the embedding, d,
is suggested by the number of appreciably non-zero
eigenvalues.

In sum, the algorithm has three steps: (i) computing
k-nearest neighbors; (ii) computing the kernel matrix;

and (iii) computing its top eigenvectors. The compu-
tation time is typically dominated by the semidefinite
program to learn the kernel matrix. In earlier work,
this step limited us to problems with n≈ 2000 exam-
ples and k≤ 5 nearest neighbors; moreover, problems
of this size typically required several hours of compu-
tation on a mid-range desktop computer.

3 Kernel Matrix Factorization

In practice, SDE scales poorly to large data sets
because it must solve a semidefinite program over
n × n matrices, where n is the number of examples.
(Note that the computation time is prohibitive de-
spite polynomial-time guarantees1 of convergence for
semidefinite programming.) In this section, we show
that for well-sampled manifolds, the kernel matrix
K can be approximately factored as the product of
smaller matrices. We then use this representation to
derive much simpler semidefinite programs for the op-
timization in the previous section.

3.1 Sketch of algorithm

We begin by sketching the basic argument behind the
factorization in eq. (1). The argument has three steps.
First, we derive a linear transformation for approxi-
mately reconstructing the entire data set of high di-
mensional inputs {~xi}n

i=1 from m randomly chosen in-
puts designated as landmarks. In particular, denoting
these landmarks by {~µα}m

α=1, the reconstructed inputs
{x̂i}n

i=1 are given by the linear transformation:

x̂i =
∑
α

Qiα~µα. (5)

The linear transformation Q is derived from a sparse
weighted graph in which each node represents an input
and the weights are used to propagate the positions of
the m landmarks to the remaining n−m nodes. The
situation is analogous to semi-supervised learning on
large graphs [1, 16, 18, 26, 27], where nodes represent
labeled or unlabeled examples and transductive infer-
ences are made by diffusion through the graph. In our
setting, the landmarks correspond to labeled exam-
ples, the reconstructed inputs to unlabeled examples,
and the vectors ~µα to the actual labels.

Next, we show that the same linear transformation
can be used to reconstruct the unfolded data set—that
is, after the mapping from inputs {~xi}n

i=1 to outputs

1For the examples in this paper, we used the SDP solver
CSDP v4.9 [4] with time complexity of O(n3+c3) per it-
eration for sparse problems with n×n target matrices and
c constraints. It seems, however, that large constant factors
can also be associated with these complexity estimates.

{~yi}n
i=1. In particular, denoting the unfolded land-

marks by {~̀α}m
α=1 and the reconstructed outputs by

{ŷi}n
i=1, we argue that ~yi ≈ ŷi, where:

ŷi =
∑
α

Qiα
~̀
α. (6)

The connection between eqs. (5–6) will follow from
the particular construction of the weighted graph that
yields the linear transformation Q. This weighted
graph is derived by appealing to the symmetries of
linear reconstruction coefficients; it is based on a simi-
lar intuition as the algorithm for manifold learning by
locally linear embedding (LLE) [13, 14].

Finally, the kernel matrix factorization in eq. (1) fol-
lows if we make the approximation

Kij = ~yi · ~yj ≈ ŷi · ŷj . (7)

In particular, substituting eq. (6) into eq. (7) gives
the approximate factorization K ≈ QLQT , where
Lαβ = ~̀

α · ~̀β is the submatrix of inner products be-
tween (unfolded) landmark positions.

3.2 Reconstructing from landmarks

To derive the linear transformation Q in eqs. (5–6),
we assume the high dimensional inputs {~xi}n

i=1 are
well sampled from a low dimensional manifold. In the
neighborhood of any point, this manifold can be locally
approximated by a linear subspace. Thus, to a good
approximation, we can hope to reconstruct each input
by a weighted sum of its r-nearest neighbors for some
small r. (The value of r is analogous but not necessar-
ily equal to the value of k used to define neighborhoods
in the previous section.) Reconstruction weights can
be found by minimizing the error function:

E(W) =
∑

i

∣∣∣∣∣∣~xi −
∑

j
Wij~xj

∣∣∣∣∣∣2 , (8)

subject to the constraint that
∑

j Wij = 1 for all j, and
where Wij = 0 if ~xj is not an r-nearest neighbor of ~xi.
The sum constraint on the rows of W ensures that the
reconstruction weights are invariant to the choice of
the origin in the input space. A small regularizer for
weight decay can also be added to this error function
if it does not already have a unique global minimum.

Without loss of generality, we now identify the first m
inputs {~x1, ~x2, . . . , ~xm} as landmarks {~µ1, ~µ2, . . . , ~µm}
and ask the following question: is it possible to recon-
struct (at least approximately) the remaining inputs
given just the landmarks ~µα and the weights Wij? For
sufficiently large m, a unique reconstruction can be ob-
tained by minimizing eq. (8) with respect to {~xi}i>m.

To this end, we rewrite the reconstruction error as a
function of the inputs, in the form:

E(X) =
∑
ij

Φij ~xi ·~xj , (9)

where Φ = (In−W)T (In−W) and In is the n × n
identity matrix. It is useful to partition the matrix Φ
into blocks distinguishing the m landmarks from the
other (unknown) inputs:

m︷ ︸︸ ︷ n−m︷ ︸︸ ︷
Φ =

(
Φ``

Φu`
Φ`u

Φuu

)
(10)

In terms of this matrix, the solution with minimum
reconstruction error is given by the linear transforma-
tion in eq. (5), where:

Q =
(

Im

(Φuu)−1Φul

)
. (11)

An example of this minimum error reconstruction is
shown in Fig. 1. The first two panels show n=10000
inputs sampled from a Swiss roll and their approxi-
mate reconstructions from eq. (5) and eq. (11) using
r=12 nearest neighbors and m=40 landmarks.

Intuitively, we can imagine the matrix Φij in eq. (9)
as defining a sparse weighted graph connecting nearby
inputs. The linear transformation reconstructing in-
puts from landmarks is then analogous to the manner
in which many semi-supervised algorithms on graphs
propagate information from labeled to unlabeled ex-
amples.

To justify eq. (6), we now imagine that the data set
has been unfolded in a way that preserves distances
and angles between nearby inputs. As noted in previ-
ous work [13, 14], the weights Wij that minimize the
reconstruction error in eq. (8) are invariant to trans-
lations and rotations of each input and its r-nearest
neighbors. Thus, roughly speaking, if the unfolding
looks locally like a rotation plus translation, then the
same weights Wij that reconstruct the inputs ~xi from
their neighbors should also reconstruct the outputs ~yi

from theirs. This line of reasoning yields eq. (6). It
also suggests that if we could somehow learn to faith-
fully embed just the landmarks in a lower dimensional
space, the remainder of the inputs could be unfolded
by a simple matrix multiplication.

3.3 Embedding the landmarks

It is straightforward to reformulate the semidefinite
program (SDP) for the kernel matrix Kij = ~yi · ~yj

in section 2 in terms of the smaller matrix
Lαβ = ~̀

α · ~̀β . In particular, appealing to the factor-
ization K ≈ QLQT , we consider the following SDP:

Maximize trace(QLQT) subject to:
1) L � 0.
2) Σij(QLQT)ij = 0.
3) For all (i, j) such that ηij =1,

(QLQT)ii−2(QLQT)ij +(QLQT)jj ≤ ||~xi − ~xj ||2.

This optimization is nearly but not quite identical to
the previous SDP up to the substitution K ≈ QLQT .
The only difference is that we have changed the equal-
ity constraints in eq. (2) to inequalities. The SDP in
section 2 is guaranteed to be feasible since all the con-
straints are satisfied by taking Kij = ~xi ·~xj (assuming
the inputs are centered on the origin). Because the
matrix factorization in eq. (1) is only approximate,
however, here we must relax the distance constraints
to preserve feasibility. Changing the equalities to in-
equalities is the simplest possible relaxation; the trivial
solution Lαβ =0 then provides a guarantee of feasibil-
ity. In practice, this relaxation does not appear to
change the solutions of the SDP in a significant way;
the variance maximization inherent to the objective
function tends to saturate the pairwise distance con-
straints, even if they are not enforced as strict equali-
ties.

To summarize, the overall procedure for unfolding the
inputs ~xi based on the kernel matrix factorization
in eq. (1) is as follows: (i) compute reconstruction
weights Wij that minimize the error function in eq. (8);
(ii) choose landmarks and compute the linear trans-
formation Q in eq. (11); (iii) solve the SDP for the
landmark kernel matrix L; (iv) derive a low dimen-
sional embedding for the landmarks ~̀

α from the eigen-
vectors and eigenvalues of L; and (v) reconstruct the
outputs ~yi from eq. (6). The free parameters of the al-
gorithm are the number of nearest neighbors r used
to derive locally linear reconstructions, the number
of nearest neighbors k used to generate distance con-
straints in the SDP, and the number of landmarks m
(which also constrains the rank of the kernel matrix).
In what follows, we will refer to this algorithm as land-
mark SDE, or simply `SDE.

`SDE can be much faster than SDE because its main
optimization is performed over m×m matrices, where
m � n. The computation time in semidefinite pro-
gramming, however, depends not only on the matrix
size, but also on the number of constraints. An ap-
parent difficulty is that SDE and `SDE have the same
number of constraints; moreover, the constraints in
the latter are not sparse, so that a naive implementa-
tion of `SDE can actually be much slower than SDE.
This difficulty is surmounted in practice by solving the
semidefinite program for `SDE while only explicitly
monitoring a small fraction of the original constraints.
To start, we feed an initial subset of constraints to

Figure 1: (1) n = 10000 inputs sampled from a
Swiss roll; (2) linear reconstruction from r = 12 near-
est neighbors and m = 40 landmarks (denoted by
black x’s); (3) embedding from `SDE, with distance
and angle constraints to k=4 nearest neighbors, com-
puted in 16 minutes.

the SDP solver, consisting only of the semidefinite-
ness constraint, the centering constraint, and the dis-
tance constraints between landmarks and their near-
est neighbors. If a solution is then found that vio-
lates some of the unmonitored constraints, these are
added to the problem, which is solved again. The
process is repeated until all the constraints are sat-
isfied. Note that this incremental scheme is made pos-
sible by the relaxation of the distance constraints from
equalities to inequalities. As in the large-scale train-
ing of support vector machines [6], it seems that many
of the constraints in `SDE are redundant, and simple
heuristics to prune these constraints can yield order-
of-magnitude speedups. (Note, however, that the cen-
tering and semidefiniteness constraints in `SDE are al-
ways enforced.)

4 Experimental Results

Experiments were performed in MATLAB to evaluate
the performance of `SDE on various data sets. The
SDPs were solved with the CSDP (v4.9) optimization
toolbox [4]. Of particular concern was the speed and
accuracy of `SDE relative to earlier implementations
of SDE.

The first data set, shown in the top left panel of Fig. 1,
consisted of n=10000 inputs sampled from a three di-
mensional “Swiss roll”. The other panels of Fig. 1
show the input reconstruction from m=40 landmarks
and r = 12 nearest neighbors, as well as the embed-
dingobtained in `SDE by constraining distances and
angles to k = 4 nearest neighbors. The computation
took 16 minutes on a mid-range desktop computer.
Table 2 shows that only 1205 out of 43182 constraints

word four nearest neighbors

one two, three, four, six
may won’t, cannot, would, will
men passengers, soldiers, officers, lawmakers
iraq states, israel, china, noriega
drugs computers,missiles, equipment, programs
january july, october, august, march
germany canada, africa, arabia, marks
recession environment, yen, season, afternoon
california minnesota, arizona, florida, georgia
republican democratic, strong, conservative, phone
government pentagon, airline, army, bush

Table 1: Selected words and their four nearest neigh-
bors (in order of increasing distance) after nonlinear
dimensionality reduction by `SDE. The d = 5 dimen-
sional embedding of D = 60000 dimensional bigram
distributions was computed by `SDE in 35 minutes
(with n=2000, k=4, r=12, and m=30).

had to be explicitly enforced by the SDP solver to find
a feasible solution. Interestingly, similarly faithful em-
beddings were obtained in shorter times using as few
as m=10 landmarks, though the input reconstructions
in these cases were of considerably worse quality. Also
worth mentioning is that adding low variance Gaus-
sian noise to the inputs had no significant impact on
the algorithm’s performance.

The second data set was created from the n = 2000
most common words in the ARPA North American
Business News corpus. Each of these words was repre-
sented by its discrete probability distribution over the
D = 60000 words that could possibly follow it. The
distributions were estimated from a maximum likeli-
hood bigram model. The embedding of these high di-
mensional distributions was performed by `SDE (with
k = 4, r = 12, and m = 30) in about 35 minutes; the
variance of the embedding, as revealed by the eigen-
value spectrum of the landmark kernel matrix, was es-
sentially confined to d=5 dimensions. Table 1 shows
a selection of words and their four nearest neighbors
in the low dimensional embedding. Despite the mas-
sive dimensionality reduction from D=60000 to d=5,
many semantically meaningful neighborhoods are seen
to be preserved.

The third experiment was performed on n=400 color
images of a teapot viewed from different angles in the
plane. Each vectorized image had a dimensionality of
D=23028, resulting from 3 bytes of color information
for each of 76×101 pixels. In previous work [22] it
was shown that SDE represents the angular mode of
variability in this data set by an almost perfect cir-
cle. Fig. 2 compares embeddings from `SDE (k = 4,
r = 12, m = 20) with normal SDE (k = 4) and LLE
(r = 12). The eigenvalue spectrum of `SDE is very

Figure 3: Top: Error rate of five-nearest-neighbors
classification on the test set of USPS handwritten dig-
its. The error rate is plotted against the dimensional-
ity of embeddings from PCA and `SDE (with k = 4,
r =12, m=10). It can be seen that `SDE preserves the
neighborhood structure of the digits fairly well with
only a few dimensions. Bottom: Normalized eigen-
value spectra from `SDE and PCA. The latter reveals
many more dimensions with appreciable variance.

similar to that of SDE, revealing that the variance of
the embedding is concentrated in two dimensions. The
results from `SDE do not exactly reproduce the re-
sults from SDE on this data set, but the difference
becomes smaller with increasing number of landmarks
(at the expense of more computation time). Actu-
ally, as shown in Fig. 4, `SDE (which took 79 seconds)
is slower than SDE on this particular data set. The
increase in computation time has two simple explana-
tions that seem peculiar to this data set. First, this
data set is rather small, and `SDE incurs some over-
head in its setup that is only negligible for large data
sets. Second, this data set of images has a particular
cyclic structure that is easily “broken” if the moni-
tored constraints are not sampled evenly. Thus, this
particular data set is not well-suited to the incremen-
tal scheme for adding unenforced constraints in `SDE;
a large number of SDP reruns are required, resulting
in a longer overall computation time than SDE. (See
Table 2.)

The final experiment was performed on the entire data
set of n=9298 USPS handwritten digits [10]. The in-
puts were 16×16 pixel grayscale images of the scanned
digits. Table 2 shows that only 690 out of 61735 in-
equality constraints needed to be explicitly monitored
by the SDP solver for `SDE to find a feasible solution.
This made it possible to obtain an embedding in 40
minutes (with k = 4, r = 12, m = 10), whereas earlier
implementations of SDE could not handle problems

Figure 4: Relative speedup of `SDE versus SDE on
data sets with different numbers of examples (n) and
landmarks (m). Speedups of two orders of magnitude
are observed on larger data sets. On small data sets,
however, SDE can be faster than `SDE.

of this size. To evaluate the embeddings from `SDE,
we compared their nearest neighbor classification error
rates to those of PCA. The top plot in Fig. 3 shows the
classification error rate (using five nearest neighbors
in the training images to classify test images) versus
the dimensionality of the embeddings from `SDE and
PCA. The error rate from `SDE drops very rapidly
with dimensionality, nearly matching the error rate on
the actual images with only d=3 dimensions. By con-
trast, PCA requires d=12 dimensions to overtake the
performace of `SDE. The bar plot at the bottom of
Fig. 3 shows the normalized eigenvalue spectra from
both `SDE and PCA. From this plot, it is clear that
`SDE concentrates the variance of its embedding in
many fewer dimensions than PCA.

When does `SDE outperform SDE? Figure 4 shows the
speedup of `SDE versus SDE on several data sets. Not
surprisingly, the relative speedup grows in proportion
with the size of the data set. Small data sets (with
n < 500) can generally be unfolded faster by SDE,
while larger data sets (with 500 < n < 2000) can be
unfolded up to 400 times faster by `SDE. For even
larger data sets, only `SDE remains a viable option.

5 Conclusion

In this paper, we have developed a much faster algo-
rithm for manifold learning by semidefinite program-
ming. There are many aspects of the algorithm that
we are still investigating, including the interplay be-
tween the number and placement of landmarks, the
definition of local neighborhoods, and the quality of

Figure 2: Comparison of embeddings from SDE, LLE and `SDE for n = 400 color images of a rotating teapot.
The vectorized images had dimension D=23028. LLE (with r=12) and `SDE (with k=4, r=12, m=20) yield
similar but slightly more irregular results than SDE (with k=4). The normalized eigenspectra in SDE and `SDE
(i.e., the eigenspectra divided by the trace of their kernel matrices) reveal that the variances of their embeddings
are concentrated in two dimensions; the eigenspectrum from LLE does not reveal this sort of information.

data set n m constraints monitored time (secs)
teapots 400 20 1599 565 79
bigrams 2000 30 11170 1396 2103

USPS digits 9298 10 61735 690 2420
Swiss roll 10000 20 43182 1205 968

Table 2: Total number of constraints versus number of constraints explicitly monitored by the SDP solver for
`SDE on several data sets. The numbers of inputs (n) and landmarks (m) are also shown, along with computation
times. The speedup of `SDE is largely derived from omitting redundant constraints.

the resulting reconstructions and embeddings. Nev-
ertheless, our initial results are promising and show
that manifold learning by semidefinite programming
can scale to much larger data sets than we originally
imagined in earlier work [21, 22].

Beyond the practical applications of `SDE, the frame-
work in this paper is interesting in the way it com-
bines ideas from several different lines of recent work.
`SDE is based on the same appeals to symmetry at
the heart of LLE [13, 14] and SDE [21, 22]. The
linear reconstructions that yield the factorization of
the kernel matrix in eq. (1) are also reminiscent of
semi-supervised algorithms for propagating labeled in-
formation through large graphs of unlabeled exam-
ples [1, 16, 18, 26, 27]. Finally, though based on a
somewhat different intuition, the computational gains
of `SDE are similar to those obtained by landmark
methods for Isomap [7].

While we have applied `SDE (in minutes) to data
sets with as many as n = 10000 examples, there ex-
ist many larger data sets for which the algorithm re-
mains impractical. Further insights are therefore re-
quired. In related work, we have developed a simple
out-of-sample extension for SDE, analogous to similar

extensions for other spectral methods [3]. Algorithmic
advances may also emerge from the dual formulation of
“maximum variance unfolding” [17], which is related
to the problem of computing fastest mixing Markov
chains on graphs. We are hopeful that a combination
of complementary approaches will lead to even faster
and more powerful algorithms for manifold learning by
semidefinite programming.

Acknowledgments

We are grateful to Ali Jadbabaie (University of Penn-
sylvania) for several discussions about semidefinite
programming and to the anonymous reviewers for
many useful comments.

References

[1] M. Belkin, I. Matveeva, and P. Niyogi. Regulariza-
tion and semi-supervised learning on large graphs. In
Proceedings of the Seventeenth Annual Conference on
Computational Learning Theory (COLT 2004), pages
624–638, Banff, Canada, 2004.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for di-
mensionality reduction and data representation. Neu-
ral Computation, 15(6):1373–1396, 2003.

[3] Y. Bengio, J-F. Paiement, and P. Vincent. Out-of-
sample extensions for LLE, Isomap, MDS, eigenmaps,
and spectral clustering. In S. Thrun, L. K. Saul, and
B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16, Cambridge, MA, 2004. MIT
Press.

[4] B. Borchers. CSDP, a C library for semidefinite
programming. Optimization Methods and Software
11(1):613-623, 1999.

[5] M. Brand. Charting a manifold. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15, pages 985–
992, Cambridge, MA, 2003. MIT Press.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines. Cambridge University
Press, Cambridge, UK, 2000.

[7] V. de Silva and J. B. Tenenbaum. Global versus lo-
cal methods in nonlinear dimensionality reduction. In
S. Becker, S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing Systems 15,
pages 721–728, Cambridge, MA, 2003. MIT Press.

[8] D. L. Donoho and C. E. Grimes. Hessian eigen-
maps: locally linear embedding techniques for high-
dimensional data. Proceedings of the National
Academy of Arts and Sciences, 100:5591–5596, 2003.

[9] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel
view of the dimensionality reduction of manifolds. In
Proceedings of the Twenty First International Confer-
ence on Machine Learning (ICML-04), pages 369–376,
Banff, Canada, 2004.

[10] J. J. Hull. A database for handwritten text recognition
research. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 16(5):550–554, May 1994.

[11] J. C. Platt. Fast embedding of sparse similarity
graphs. In S. Thrun, L. K. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing
Systems 16, Cambridge, MA, 2004. MIT Press.

[12] J. C. Platt. FastMap, MetricMap, and landmark MDS
are all nyström algorithms. In Proceedings of the Tenth
International Workshop on Artificial Intelligence and
Statistics, Barbados, WI, January 2005.

[13] S. T. Roweis and L. K. Saul. Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290:2323–2326, 2000.

[14] L. K. Saul and S. T. Roweis. Think globally, fit lo-
cally: unsupervised learning of low dimensional man-
ifolds. Journal of Machine Learning Research, 4:119–
155, 2003.

[15] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlin-
ear component analysis as a kernel eigenvalue prob-
lem. Neural Computation, 10:1299–1319, 1998.

[16] A. J. Smola and R. Kondor. Kernels and regulariza-
tion on graphs. In Proceedings of the Sixteenth An-
nual Conference on Computational Learning Theory
and Kernel Workshop, Washington D.C., 2003.

[17] J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest
mixing Markov process on a graph and a connection
to a maximum variance unfolding problem. SIAM Re-
view, submitted.

[18] M. Szummer and T. Jaakkola. Partially labeled clas-
sification with Markov random walks. In T. G. Di-
etterich, S. Becker, and Z. Ghahramani, editors, Ad-
vances in Neural Information Processing Systems 14,
Cambridge, MA, 2002. MIT Press.

[19] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear dimension-
ality reduction. Science, 290:2319–2323, 2000.

[20] L. Vandenberghe and S. P. Boyd. Semidefinite pro-
gramming. SIAM Review, 38(1):49–95, March 1996.

[21] K. Q. Weinberger and L. K. Saul. Unsupervised
learning of image manifolds by semidefinite program-
ming. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR-
04), volume 2, pages 988–995, Washington D.C., 2004.

[22] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning
a kernel matrix for nonlinear dimensionality reduc-
tion. In Proceedings of the Twenty First International
Conference on Machine Learning (ICML-04), pages
839–846, Banff, Canada, 2004.

[23] C. K. I. Williams. On a connection between kernel
PCA and metric multidimensional scaling. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Ad-
vances in Neural Information Processing Systems 13,
pages 675–681, Cambridge, MA, 2001. MIT Press.

[24] Christopher K. I. Williams and Matthias Seeger. Us-
ing the Nyström method to speed up kernel machines.
In T. Leen, T. Dietterich, and V. Tresp, editors, Neu-
ral Information Processing Systems 13, pages 682–
688, Cambridge, MA, 2001. MIT Press.

[25] Z. Zhang and H. Zha. Principal manifolds and non-
linear dimensionality reduction by local tangent space
alignment. SIAM Journal of Scientific Computing, in
press.

[26] D. Zhou, O. Bousquet, T. N. Lai, J. Weston, and
B. Schölkopf. Learning with local and global consis-
tency. In S. Thrun, L. K. Saul, and B. Schölkopf, edi-
tors, Advances in Neural Information Processing Sys-
tems 16, pages 321–328, Cambridge, MA, 2004. MIT
Press.

[27] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-
supervised learning using Gaussian fields and har-
monic functions. In Proceedings of the Twentieth In-
ternational Conference on Machine Learning (ICML
2003), pages 912–919, Washington D.C., 2003.

