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Abstract

We consider wavelet denoising based on min-

imum description length (MDL) principle.

The derivation of an MDL denoising criterion

proposed by Rissanen involves a renormaliza-

tion whose effect on the resulting method has

not been well understood so far. By inspect-

ing the behavior of the method we obtain a

characterization of its domain of applicabil-

ity: good performance in the low variance

regime but over-fitting in the high variance

regime. We also describe unexpected behav-

ior in the theoretical situation where the ob-

served signal is pure noise. An interpreta-

tion for the renormalization is given which

explains both the empirical and theoretical

findings. For practitioners we point out two

technical pitfalls and ways to avoid them.

Further, we give guidelines for constructing

improved MDL denoising methods.

1 INTRODUCTION

Most natural signals such as audio and images are typ-

ically redundant in that the neighboring time-slots or

pixels are highly correlated. Wavelet representations

of such signals are very sparse, meaning that most of

the wavelet coefficients are very small and the informa-

tion content is concentrated on only a small fraction of

the coefficients (Mallat, 1989). This can be exploited

in data compression, pattern recognition, and denois-

ing, i.e., separating the informative part of a signal

from noise. In statistics the denoising problem has

been analyzed in terms of statistical risk, i.e., the ex-

pected distortion under an assumed model where typ-

ically distortion is defined as squared error and the

model consists of deterministic signal plus additive

Gaussian noise. Donoho & Johnstone (1994) prove

that certain thresholding methods are nearly minimax

optimal for a large class of signals. In the Bayesian ap-

proach a prior distribution is postulated for the signal

and the expected (Bayes) risk is minimized (Ruggeri

& Vidakovic, 1999). Both approaches require that pa-

rameters such as noise variance are known beforehand

or determined as a part of the process.

The minimum description length (MDL) philosophy

offers an alternative view where the noise is defined as

the incompressible part of the signal (Rissanen, 2000).

We analyze Rissanen’s MDL denoising method and

characterize its domain of applicability. We show that

the method performs well in the low variance regime

but fails in the high variance regime when compared to

a thresholding method proposed by Donoho and John-

stone. In particular, in the theoretical situation where

the noise completely dominates the signal, the MDL

denoising method retains a majority of the wavelet co-

efficients even though in this case discarding all coef-

ficients is the optimal solution in terms of both statis-

tical risk and what we intuitively understand as sepa-

rating information from noise.

We explain the behavior of the MDL method by show-

ing that it results not from the MDL principle itself but

from a renormalization technique used in deriving the

method. We also point out two technical pitfalls in

the implementation of MDL denoising that practition-

ers should keep in mind. Further, we give guidelines

for constructing MDL denoising methods that have a

wider domain of applicability than the current one and

list objectives for future research in this direction.



2 MDL PRINCIPLE

We start by introducing some notation and briefly re-

viewing some of the relevant parts of MDL theory.

A recent introduction to MDL is given by Grünwald

(2005), see also Barron et al. (1998).

2.1 STOCHASTIC COMPLEXITY

Let yn be a sequence of observations. We define a

model class as a set of densities {f(yn ; θ) : θ} indexed

by a finite-dimensional parameter vector θ. The max-

imum likelihood estimator of the parameter vector is

denoted by θ̂(yn). The normalized maximum likeli-

hood (NML) density for a model class parameterized

by parameter vector θ is defined by

f̄(yn) =
f(yn ; θ̂(yn))

Cn
, (1)

where Cn is a normalizing constant:

Cn =

∫

Y

f(yn ; θ̂(yn)) dyn. (2)

Implicit in the notation is the range of integration Y

within which the data yn is restricted. A range other

than the full domain of yn is necessary in cases where

the integral is otherwise unbounded.

The difference between the ideal code-length (negative

logarithm) of the NML density and the unachievable

maximum likelihood code-length is given by the re-

gret which is easily seen to be constant for all data

sequences yn:

− ln f̄(yn) − [− ln f(yn ; θ̂(yn))] = lnCn.

The NML density is the unique minimizer in

Shtarkov’s minimax problem (Shtarkov, 1987):

min
q

max
yn

− ln q(yn) − [− ln f(yn ; θ̂(yn))] = lnCn,

and the following more general problem:

min
q

max
p

Ep − ln q(yn) − [− ln f(yn ; θ̂(yn))] = lnCn,

where the expectation over yn is taken with respect

to the worst-case data generating density p. For any

density q other than the NML density, the maximum

(expected) regret is greater than lnCn. Further, the

NML is also the least favorable distribution in that is

the unique maximizer of the maximin problem with

the order of the min and max operators in the lat-

ter problem above exchanged. For these reasons the

NML code is said to be universal in that it gives the

shortest description of the data achievable with a given

model class, deserving to be defined as the stochastic

complexity of the data for the model class. The MDL

principle advocates the choice of the model class for

which stochastic complexity is minimized.

2.2 PARAMETRIC COMPLEXITY

It is instructive to view NML as seeking a balance be-

tween fit versus complexity. The numerator measures

how well the best model in the model class can rep-

resent the observed data while the denominator ‘pe-

nalizes’ too complex model classes. The logarithm

of the denominator, lnCn, is termed parametric com-

plexity of the model class. Currently one of the most

active areas of research within the MDL framework

is the problem of unbounded parametric complexity

which makes it impossible to define the NML density

for models such as geometric, Poisson, and Gaussian

families, see (Grünwald, 2005).

For model classes with unbounded parametric com-

plexity, Rissanen (1996) proposes to use a two-part

scheme where the range of the data is first encoded

using a code based on an universal code for integers

after which the data is encoded using NML taking ad-

vantage of the restricted range. Foster & Stine (2001,

2005) analyze similar schemes where the range of the

parameters is restricted instead that of the the data.

A weakness in such solutions is that they typically re-

sult in two-part codes that are not complete, i.e., the

corresponding density integrates to less than one.

Rissanen (2000) describes an elegant renormalization

scheme where the hyperparameters defining the range

of the data are optimized and a second normalization

is performed such that the resulting code is complete.

This ‘renormalized’ NML can be used for model se-

lection in linear regression and denoising. We discuss

the renormalization and the resulting MDL denoising

criterion more thoroughly in Sec. 4.

3 WAVELET DENOISING

Wavelet denoising can be seen as a special case of lin-

ear regression with regressor selection. For a good

textbook on wavelets, see (Daubechies, 1992). An ex-



tensive review of statistical uses of wavelets is given

by Abramovich et al. (2000).

3.1 WAVELET REGRESSION

This section closely follows Rissanen (2000). Let X

be an n×k matrix of regressor variables (independent

variables), and yn be a vector of n regression variables

(dependent variables). In a linear regression model

the regression variables are dependent on the regressor

variables and a k × 1 parameter vector β through the

equation yn = Xβ + εn, where εn is a vector of n noise

terms that are modeled as independent Gaussian with

zero mean and variance σ2. This is equivalent to the

equation

f(yn ;β, σ) =

(

1√
2πσ

)n

exp

(

−‖yn − Xβ‖2

2σ2

)

, (3)

where ‖ · ‖2 denotes the squared Euclidean norm. The

regressor matrix X is considered fixed and given in all

of the following and therefore omitted in the notation.

We define the matrices Z = X ′X and Σ = n−1Z which

are assumed to be positive definite in order to guaran-

tee uniqueness of maximum likelihood estimates. The

maximum likelihood estimators of β and σ2 are inde-

pendent and given by

β̂(yn) = Z−1X ′yn, (4)

σ̂2(yn) =
1

n
‖yn − Xβ̂′(yn)‖2. (5)

Now, assume the vector yn can be considered a se-

ries, i.e., the data points are ordered in a meaningful

way. We can then obtain a regressor matrix X by var-

ious transformations of the index i of the yi variables.

Thus, we define for each j ≤ k, Xi,j = fj(i), where fj

are arbitrary basis functions. One both theoretically

and practically appealing way to define the functions

fj is to use a wavelet basis, see e.g., Daubechies (1992).

By letting the regressor matrix be square, i.e., k = n,

and taking as the basis functions fj(i) an appropriate

wavelet basis, we get an orthogonal regressor matrix

X, i.e., X has as its inverse the transpose X ′ and we

have Z = X−1X = I, where I is the identity matrix.

Instead of using all the basis vectors, we may also

choose a subset γ of them. This gives the recon-

structed version ŷn
γ = Xβ̂γ(yn), and the difference to

the original signal is left to be modeled as noise. Since

the basis is orthogonal, the maximum likelihood val-

ues of any subset of all the parameters are equal to the

corresponding maximum likelihood parameters in the

full model and one gets the parameter vector

β̂γ(yn) = (δi(γ)β̂i(y
n))′,

where δi(γ) is equal to one if the index i is in the index

set γ of retained coefficients and zero otherwise. The

maximum likelihood estimator of the noise variance

becomes

σ̂2
γ(yn) =

1

n
‖Xβ̂′(yn) − Xβ̂′

γ(yn)‖2

=
1

n
‖β̂(yn) − β̂γ(yn)‖2,

which is seen to be the sum of the discarded coeffi-

cients divided by n. We denote for convenience the

squared norm of the maximum likelihood coefficient

vector corresponding to γ by Sγ :

Sγ = ‖β̂γ(yn)‖2 =
∑

i∈γ

β2
i .

The squared norm of the coefficient in the full model

with k = n is denoted simply by S. From orthogonal-

ity it follows that S is equal to the squared norm of

the data ‖yn‖2.

3.2 THE DENOISING PROBLEM

The denoising problem is now to choose a subset γ

such that the retained coefficients would give a good

reconstruction of the informative part of the signal

while the discarded coefficients would contain as much

of the noise in the signal as possible, The sparseness

of wavelet representations, i.e., the fact that a large

fraction of the coefficients are essentially zero in the

‘noise-free’ or informative part of the signal (see (Mal-

lat, 1989)) makes it plausible to recover the informa-

tive part by identifying and discarding the coefficients

that are likely to contain pure noise.

The idea of wavelet thresholding was proposed soon af-

ter Mallat’s paper independently by Donoho & John-

stone (1991) and Weaver et al. (1991). In wavelet

thresholding a threshold value is first determined and

the coefficients whose absolute value is less than the

threshold are discarded. Using the maximum likeli-

hood estimates as the values of the retained coefficients

is called hard thresholding while in soft thresholding

the retained coefficients are also shrunk towards zero

in order to reduce the noise distorting the informative

coefficients.



In statistical wavelet denoising the denoising problem

is often formalized using the concept of statistical risk,

i.e., the expected distortion (usually squared error) of

the reconstructed signal when compared to a true sig-

nal. This requires an assumed model typically involv-

ing i.i.d. noise added to a true signal. In the statis-

tical approach the signal is considered deterministic

and the worst-case risk over a class of signals is mini-

mized while in the Bayesian approach (see, e.g., (Rug-

geri & Vidakovic, 1999; Chang et al. , 2000)) a prior

distribution on the true signal is postulated and the

expected (Bayes) risk is minimized. Donoho & John-

stone (1994) have derived a set of wavelet denoising

methods including the following hard threshold:

tDJ = σ
√

2 log n, (6)

where σ is the standard deviation of noise.

In order to apply the method in practice, one usu-

ally needs to estimate σ. Donoho & Johnstone sug-

gest using as an estimator the median of the coeffi-

cients on the finest level divided by .6745 which usu-

ally works well as long as the signal is contained mainly

in the low frequency coefficients. There are also sev-

eral other, more refined denoising methods suggested

by the mentioned authors and others but due to space

limitations and the fact that our real focus is in under-

standing the behavior of MDL based denoising, these

methods are not discussed in the current paper. Fodor

& Kamath (2003) present an empirical comparison

of different wavelet denoising methods; see also Oja-

nen et al. (2004) for a comparison of the Donoho-

Johnstone method and MDL denoising.

4 MDL DENOISING

The MDL principle offers a different approach to de-

noising where the objective is to separate information

and noise in the observed signal. Unlike in the statisti-

cal approach, information and noise are defined as the

compressible and the incompressible part of the signal

respectively, thus depending on the model class used

for describing the signal.

4.1 MDL APPROACH TO DENOISING

One of the most characteristic features of the MDL ap-

proach to statistical modeling is that there is no need

to assume a hypothetical generating model whose ex-

istence would be very hard to verify. Any background

information regarding the phenomenon under study is

incorporated in the choice of the model class. The only

assumption is that at least one of the model classes un-

der consideration allows compression of the data which

is clearly much easier to accept than the assumption

that the assumed model is indeed an exact replica of

the true generating mechanism.

In denoising, MDL model selection is performed by

considering each subset of the coefficients as a model

class and minimizing the stochastic complexity of the

data given the model class. Unfortunately, for wavelet

based models and more generally, for linear regres-

sion models, the normalizer in the NML density is un-

bounded and NML is not defined unless the range of

the data is restricted. The problem can be solved by

resorting to universal models other than NML, such as

two-part or mixture models in defining the stochastic

complexity. Hansen & Yu (2000) propose a combina-

tion of two-part and mixture codes for wavelet denois-

ing. Their method also includes an estimation step

similar to the one used by Donoho & Johnstone, and

is thus not completely faithful to the MDL philosophy.

4.2 RENORMALIZED NML

Rissanen (2000) solves the problem of unbounded

parametric complexity by two-fold normalization. The

data range is first restricted such that the squared (Eu-

clidean) norm of the maximum likelihood values of the

wavelet coefficients ‖β̂γ(yn)‖2 is always less than some

maximal value R and the maximum likelihood vari-

ance σ̂2
γ(yn) is greater than some minimal value σ2

0 .

We then obtain an NML density with limited support

for each pair (R, σ2
0). It is now possible to construct

a ‘renormalized’ or ‘meta’ NML density by taking the

obtained NML densities as a new model class1.

After the application of Stirling’s approximation to

gamma functions and ignoring constant terms it can be

shown that the code-length to be minimized becomes2

(n − k)

2
ln

S − Sγ

n − k
+

k

2
ln

Sγ

k
+

1

2
ln(k(n − k)). (7)

1In fact even the renormalization requires the data

range to be restricted but it turns out that the final range

doesn’t affect the resulting criterion.
2Multiplying the code-length formula by two gives an

equivalent minimization problem. Note the last term that

was incorrect in some of the earlier publications.



It can be shown that the criterion is always maximized

by choosing γ such that either the k largest or the k

smallest coefficients are retained for some k. We con-

sider this an artefact of the renormalization performed

and assume in the what follows that the k largest coef-

ficients are retained. We return to the issue in Sec. 5.3.

4.3 PRACTICAL ISSUES

We point out two issues of a rather technical nature

that nevertheless deserve to be noted by practitioners

since we have found them to result in very poor per-

formance in more than one case. First, in all wavelet

thresholding methods, it should be made sure that the

wavelet transform used is such that the coefficients are

scaled properly, in other words, that the correspond-

ing basis is orthogonal. This is essential for all wavelet

thresholding methods. It is easy to check that the sum

of squares of the original data and the transformed co-

efficients are always equal.

Secondly, since the criterion is derived for continuous

data and involves densities, problems may occur when

it is applied to low-precision or discrete, say integer,

data. If the data can be represented exactly by some

number k0 of coefficients, the criterion becomes minus

infinity for all k ≥ k0 because the first term includes

a logarithm of zero. Also, for k almost as large as k0

the criterion takes a very small value and such a value

of k is often selected as the optimal one potentially re-

sulting in severe over-fitting. This problem may either

be solved by using a lower bound for (S −Sγ)/(n− k)

corresponding to a lower bound on the variance. Al-

ternatively, once a sudden drop to minus infinity in the

criterion is recognized it is possible to reject all values

of k that are near the point where the drop occurs.

5 BEHAVIOR OF MDL DENOISING

By inspecting the behavior of the MDL denoising cri-

terion as a function of noise variance, we are able to

give a rough characterization of its domain of applica-

bility. This makes way towards a more important goal,

the understanding of renormalized NML, and poten-

tial ways of generalizing and improving it.

5.1 EMPIRICAL OBSERVATIONS

Fig. 1 illustrates the behavior of the MDL denoising

method and the method by Donoho & Johnstone de-
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Figure 1: Lena Denoised. Top left: Noisy image (σ =

10.0); middle left: Donoho-Johnstone (2.2 % retained,

std. error 8.1); bottom left: MDL (7.6 % retained, std. er-

ror 6.8); top right: Noisy image (σ = 47.5); middle right:

Donoho-Johnstone (0.3 % retained, std. error 17.3); bottom

right: MDL (46.9 % retained, std.error 44.9).

scribed in Sec. 3 with Daubechies N=4 wavelet basis.

The original image is distorted by Gaussian noise to

get a noisy signal. When there is little noise, the dif-

ference is small, MDL method performing better in

terms of standard error. However, when there is much

noise the methods produce very different results. The

Donoho-Johnstone method retains only 0.3 percent of

the coefficients while the MDL method retains 46.9

percent of them, the former giving a better result in

terms of standard error.

The effect of the standard deviation of noise on the be-

havior of the two methods can be clearly seen in Fig. 2.

It can be seen that the MDL method outperforms the

Donoho-Johnstone method when the noise standard

deviation is less than 15. However, outside this range

the performance of the MDL method degrades linearly
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Figure 2: Effect of noise.

due to retaining too many coefficients. The standard

error of the noise should be compared to the standard

deviation of the original signal which in this case was

46.6. Experiments with other natural images indicate

that the standard deviation of the signal determines

the scale but does not affect the shape of the curves.

As a rough characterization of the domain of appli-

cability of the MDL method it can be said that the

noise standard deviation should be at most half of the

standard deviation of the signal.

5.2 THEORETICAL ANALYSIS

The degradation of performance of the MDL denoising

criterion is underlined when the noise variance is very

large. This can be demonstrated theoretically by con-

sidering what happens when the noise variance grows

without bound so that in the limit the signal is pure

Gaussian noise. Since the criterion is scale invariant we

may without loss of generality assume unit variance.

Essentially, we need to evaluate the asymptotics of Sk,

the squared sum of the k largest coefficients in abso-

lute value. Let β2
i1

≤ β2
i2

≤ ... ≤ β2
in

be the squared

coefficients ordered in ascending order. We have

Sk =

n
∑

j=n−k+1

β2
ij

=
∑

β2
i
≥t2

k

β2
i ,

where we assumed that the first retained coefficient

tk := βin−k+1
is unique. If we consider tk a fixed pa-

rameter instead of a random variable, the terms in the

above sum are independent with expectation given by:

E[β2
i | βi ≥ tk] =

1

1 − Φ(tk)

∫ +∞

tk

x2e−
x2

2

√
2π

dx,

n=128 n=1024

 127 96 64 32 1
k

k=78

 1023 768 512 256 1
k

k=625

Figure 3: The renormalized NML denoising criterion with

pure Gaussian noise.

where the expectation is taken with respect to the

standard normal distribution whose distribution func-

tion is denoted by Φ. The integral is given by

∫

x2e−
x2

2

√
2π

dx =
−xe−

x2

2

√
2π

+ Φ(x),

and the expectation becomes

E[β2
i | βi ≥ tk] =

tke−
t2
k
2

√
2π(1 − Φ(tk))

+ 1. (8)

Now in order to contain a k/n fraction of Gaussian

random variates as n goes to infinity, the limiting value

of the cut-point tk must be

lim
n→∞

tk = Φ−1

(

1 − k

2n

)

.

(Division of k by two comes from the fact that also

negative coefficients with large absolute value are in-

cluded.) Plugging this into Eq. (8) in place of tk gives

the asymptotic behavior of the average Sk/k. Since

the expectation of all coefficients under the unit vari-

ance Gaussian noise model is equal to one, the expec-

tation of (Sn − Sk)/(n − k), i.e., the expectation of

the n − k smallest squared coefficients can be easily

obtained once the expectation of the k largest coeffi-

cients is known.

Fig. 3 shows the values of the renormalized NML de-

noising criterion with sample sizes n = 128 (on the

left), and n = 1024 (on the right), with 50 repetitions

in each case. Data is pure Gaussian noise with unit

variance. The theoretical minima for the two samples

sizes are k = 78 and k = 625 respectively. The asymp-

totic curve is plotted with a solid line. By evaluating

the criterion for large n it can be seen that the MDL

method tends to keep about 625/1024 ≈ 61 % of the

coefficients. This is suboptimal in terms of both sta-

tistical risk and the natural meaning of information



and noise in data. If all data is indeed pure noise the

method should indicate that there is no information in

the data at all.

5.3 INTERPRETATION

Let us now consider the interpretation of the renormal-

ized NML denoising criterion in order to understand

the above described behavior. The code-length func-

tion (7) is the negative logarithm of a corresponding

density of the following form (ignoring normalization

constants):

(S − Sγ)−(n−k)/2S−k/2
γ = ‖β̂γc‖−(n−k)‖β̂γ‖−k, (9)

where γc denotes the complement of γ, i.e, the set of

n − k discarded coefficients.

Incidentally, the form in Eq. (9) is equivalent to using

a zero-mean Gaussian density with optimized variance

for both the retained and the discarded coefficients.

This can be seen as follows. Given a vector x of k

random variates, the maximal density achievable with

a zero-mean Gaussian density assuming the entries in

the vector are independent is given by

max
σ

(2πσ2)−k/2 exp

(

−‖x‖2

2σ2

)

=
(

2πek−1‖x‖2
)−k/2

(10)

which is seen to be proportional to ‖x‖−k. Thus the

two factors in Eq. (9) correspond to maximized Gaus-

sian densities of the kind in (10). Fig. 4 gives an illus-

tration verifying that the threshold is at the intersec-

tion points of two Gaussian densities fitted to the dis-

carded and the retained coefficients respectively. The

latter density has very high variance because the em-

pirical distribution of the coefficients has heavy tails.

The fact that both retained and discarded coefficients

are encoded with a Gaussian density explains many

aspects of the behavior reported above.

It is quite easy to derive rough conditions on when

the criterion performs well. From orthogonality of the

wavelet transform it follows that each of the informa-

tive coefficients is a sum of an information term and a

noise term. Assuming independent noise, the density

of the sum is given by the convolution of the densities

of the summands. For instance, if the original sig-

nal has Gaussian density, the convolution is Gaussian

as well with variance equal to the sum of the signal

variance σ2
S and the noise variance σ2

N . As long as the

 0
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Figure 4: Gaussian densities fitted to noisy Lena (σ =

10.0). The empirical histogram is plotted with solid line.

Gaussian densities with variance adjusted for the discarded

(σ̂ = 6.0) and the retained (σ̂ = 153.7) coefficients are

shown with dotted curves. Threshold is at ±15.4.

signal variance is large compared to the noise variance,

the variance of the informative coefficients, σ2
S +σ2

N , is

significantly larger than that of the noise coefficients.

Consequently, the criterion based on Gaussian densi-

ties with different variances is able to separate the in-

formative and non-informative coefficients as long as

the noise variance is not too high.3 It is also easy

to understand that fitting two Gaussian densities to a

single one gives nonsensical results which explains the

behavior in the pure noise scenario of Sec. 5.2.

It has been observed that wavelet coefficients in nat-

ural images tend to be well modeled by general-

ized Gaussian densities of the form K exp(−(|x|/α)β)

where K is a normalization constant (Mallat, 1989).

The typical values of β are near one which corresponds

to the Laplacian (double exponential) density. This

suggests that the density of the observed coefficients

can be modeled by a convolution of the Laplace and

Gaussian densities. Ruggeri & Vidakovic (1999) con-

sider Bayes optimal hard thresholding in this model

when the scale parameters of both densities are known.

Chang et al. (2000) estimate the scale parameters

from the observed signal. The construction of an NML

model based on Laplacian and generalized Gaussian

models with a proper treatment of the scale parame-

ters is an interesting future research topic.

3Similar reasoning also shows that while the criterion is

symmetric in the two sets of coefficients, one should always

retain the k largest coefficients instead of the k smallest

coefficients.



6 CONCLUSIONS

In its general form, the MDL principle form essentially

aims at separating meaningful information from noise,

and thus provides a very natural approach to denois-

ing as an alternative to the statistical and Bayesian

approaches. There are, however, some intricate issues

in applying MDL to the denoising problem related to

unbounded parametric complexity of Gaussian fami-

lies. We discussed a solution by Rissanen involving a

renormalization whose effect has been unclear so far

and is of considerable interest not only in denoising

applications but in the MDL framework in general.

The reported empirical and theoretical findings sug-

gested a characterization of the domain of applica-

bility for Rissanen’s denoising method. It was seen

that over-fitting is likely in the high noise regime. For

practitioners, we pointed out two technical pitfalls and

ways to avoid them. We gave an interpretation of

the renormalization by showing that it results in a

code based on two Gaussian densities, one for the re-

tained wavelet coefficients and one for the discarded

ones. Based on the interpretation we were able to ex-

plain both the empirical and the theoretical findings.

The interpretation also facilitates understanding of the

problem of unbounded parametric complexity in gen-

eral and suggests generalizations of the renormaliza-

tion procedure, potentially leading to improved MDL

methods for denoising as well as other applications.
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