
Semi-Supervised Classification by Low Density Separation

Olivier Chapelle, Alexander Zien
Max Planck Institute for Biological Cybernetics

72076 Tübingen, Germany

Abstract

We believe that the cluster assumption is key
to successful semi-supervised learning. Based
on this, we propose three semi-supervised al-
gorithms: 1. deriving graph-based distances
that emphazise low density regions between
clusters, followed by training a standard
SVM; 2. optimizing the Transductive SVM
objective function, which places the decision
boundary in low density regions, by gradient
descent; 3. combining the first two to make
maximum use of the cluster assumption. We
compare with state of the art algorithms and
demonstrate superior accuracy for the latter
two methods.

1 INTRODUCTION

The goal of semi-supervised classification is to use un-
labeled data to improve the generalization. The cluster

assumption states that the decision boundary should
not cross high density regions, but instead lie in low
density regions. We believe that virtually all successful
semi-supervised algorithms utilize the cluster assump-
tion, though most of the time indirectly.

For instance, manifold learning algorithms (e.g., [1])
construct decision functions that vary little along the
manifolds occupied by the data. Often, different
classes form separate manifolds. Then, manifold learn-
ing indirectly implements the cluster assumption by
not cutting the manifolds.

The Transductive SVM [20] implements the cluster as-
sumption more directly by trying to find a hyperplane
which is far away from the unlabeled points. In our
opinion, the rationale for maximizing the margin is
very different for the labeled and unlabeled points:

• For the labeled points, it implements regulariza-
tion [20]. Intuitively, the large margin property

makes the classification robust with respect to
perturbations of the data points [6].

• For the unlabeled points, the margin maximiza-
tion implements the cluster assumption. It is not
directly related to regularization (in this respect,
we have a different view than Vapnik [20]). Con-
sider for instance an example where the cluster
assumption does not hold: a uniform distribution
of input points. Then the unlabeled points con-
vey almost no information, and maximizing the
margin on those points is useless (and can even
be harmful).

TSVM might seem to be the perfect semi-supervised
algorithm, since it combines the powerful regulariza-
tion of SVMs with a direct implementation of the clus-
ter assumption. However, its main drawback is that
the objective function is non-convex and thus diffi-
cult to minimize. Consequently, optimization heuris-
tics like SVMlight [12] sometimes give bad results and
are often criticized. The main points of this paper are:

• The objective function of TSVM is appropriate,
but different ways of optimizing it can lead to
very different results. Thus, it is more accurate
to criticize a given implementation of the TSVM
rather than the objective function itself.

• The search for a low density decision boundary is
difficult. The task of the TSVM algorithm can be
eased by changing the data representation.

To substantiate our claims, we develop and assess cor-
responding algorithms. Firstly, we propose a graph-
based semi-supervised learning method exploiting the
cluster assumption. Secondly, it is shown that a gra-
dient descent on the primal formulation of the TSVM
objective function performs significantly better then
the optimization strategy pursued in SVMlight [12].
Finally, by combining these two ideas in one algorithm,
we are able to achieve clearly superior generalization
accuracy.

2 ALGORITHMS

Let the given data consist of n labeled data points
xi, 1 ≤ i ≤ n, and m unlabeled data points xi, n+1 ≤
i ≤ n +m. For simplicity, we assume that the labels
yi, 1 ≤ i ≤ n, are binary, i.e. yi = ±1; for multi-class
problems, we use the one-against-rest scheme that is
common for SVMs (e.g., [17]).

In the following sections, we describe two different
ways to enforce the cluster assumption in SVM classi-
fication and how they can be implemented.

2.1 GRAPH-BASED SIMILARITIES

Let the graph G = (V,E) be derived from the data
such that the nodes are the data points, V = {xi}.
If sparsity is desired, edges are placed between nodes
that are nearest neighbors (NN), either thresholding
the degree (k-NN)1 or the distance (ε-NN). Many semi-
supervised learning methods operate on nearest neigh-
bor graphs, see e.g. [1, 14, 18, 23, 22]. Usually they do
not require the data points themselves, but only their
pairwise distances along the edges. In the following we
assume that the edges (i, j) ∈ E are weighted by Eu-
clidean distances d(i, j) := ||xi − xj ||2 (missing edges
correspond to d(i, j) = ∞), although other distances
are possible as well.

Many graph-based semi-supervised algorithms work
by enforcing smoothness of the solution with respect
to the graph, i.e. that the output function varies lit-
tle between connected nodes. Here we use the graph
to derive pairwise similarities between points, thereby
“squeezing” the distances in high density regions while
leaving them in low density regions. This idea has been
proposed before, e.g. in [5, 21] and [4, section 3]. It
has been implemented and used in Isomap [19], cluster
kernels [7], and connectivity clustering [10].

2.1.1 Motivation

According to the cluster assumption, the decision
boundary should preferably not cut clusters. A way
to enforce this for similarity-based classifiers is to as-
sign low similarities to pairs of points that lie in differ-
ent clusters. To do so, we construct a Parzen window
density estimate with a Gaussian kernel of width 1√

2
σ,

p̂(x′) =
1√
πσ

n+m
∑

i=1

exp

(

−||x
′ − xi||2
σ2

)

.

If two points are in the same cluster, it means that
there exists a continuous connecting curve that only
goes through regions of high density; if two points are

1made symmetric by including (j, i) in E if (i, j) ∈ E

in different clusters, every such curve has to traverse a
density valley. We can thus define the similarity of two
points by maximizing over all continuous connecting
curves the minimum density along the connection, but
this is hard to compute.

Two observations, illustrated in Figure 1, allow to ap-
proximate the above similarity with paths on a graph:
(a) An optimal connecting curve can be well approxi-
mated by conjoining short line segments that directly
connect points. (b) The minimum density is assumed
at the middle of a line segment, and dominated by the
closest points.

(a) (b) distance along path

de
ns

ity

Figure 1: Optimal connecting curves are well approx-
imated by paths of short distance edges on a graph.

2.1.2 A density-sensitive distance measure

Formally, we define p ∈ V l to be a path of length
l =: |p| on a graph G = (V,E), if (pk, pk+1) ∈ E for
1 ≤ k < |p|. A path p is said to connect the nodes p1

and p|p|; let Pi,j denote the set of all paths connecting
xi and xj . We obtain

max
p∈Pi,j

min
k<|p|

p̂

(

1

2
(xpk

+ xpk+1
)

)

≈ c · exp
[

− 1

2σ2

(

min
p∈Pi,j

max
k<|p|

d(pk, pk+1)

)2
]

(1)

≡ k(xi,xj).

This k, called “connectivity kernel”, is positive definite
and was suggested for clustering previously [10].

The kernel values do not depend on the length of the
paths, which may lead to the connection of otherwise
separated clusters by single outliers (“bridge” points).
To avoid this problem, we “soften” the max in Equa-
tion (1) by replacing it with

smaxρ(p) :=
1

ρ
ln



1 +

|p|−1
∑

k=1

(

eρd(pk,pk+1) − 1
)



 . (2)

Equation (1) is recovered by taking ρ→∞. If ρ→ 0,
smaxρ(p) becomes simply the sum of original distances
along the path p ∈ Pi,j . Due to the triangular inequal-
ity, this is never less than d(i, j), so that in a full graph
with Euclidean distances the minimum path distance

becomes ||xi − xj ||2. Thus, the standard Gaussian
RBF kernel is recovered, and no use is made of the un-
labeled data. However, for a sparse graph computing
the minimum path distance when ρ→ 0 is equivalent
to Isomap [19].

The proposed method can be summarized as follows:

1. Build nearest neighbor graph G from all (labeled
and unlabeled) data.

2. Compute the n × (n +m) distance matrix Dρ of
minimal ρ-path distances according to

Dρ
i,j =

1

ρ2
ln



1 + min
p∈Pi,j

|p|−1
∑

k=1

(

eρd(pk,pk+1) − 1
)





2

from all labeled points to all points.

3. Perform a non-linear transformation on Dρ to get
kernel K,

Ki,j = exp

(

−
Dρ
i,j

2σ2

)

The linear case corresponds to σ = ∞ and K =
− 1

2H
nDρHn+m, with Hp being the p× p center-

ing matrix (as in Multidimensional Scaling [8]):
Hp

ij = 1i=j − 1i≤n/n.

4. Train an SVM with K and predict.

2.1.3 Comments

A few comments can be made on these steps.

1- The use of a sparse graph G is merely a way to save
computation time. This is in contrast to some other
graph-based methods, that require sparseness for de-
tecting the manifold structure (e.g. Isomap). In our
method, the sparse graph is always seen as an approx-
imation to the full graph. However, the accuracy of
this approximation depends on the value of the soft-
ening parameter ρ: for ρ → 0, the direct connection
is always shortest, so that every deletion of an edge
can cause the corresponding distance to increase. For
ρ→∞, shortest paths almost never contain any long
edge, so that long edges can safely be deleted.

2- For large values of ρ, the distances between points
in the same cluster are decreased. In contrast, the dis-
tances between points from different clusters are still
dominated by the gaps between the clusters and, as a
result, those gaps become more pronounced.

Instead of Equation (2), it is possible to use other inter-
polations between the max and the mean such as the

Minkowski metric,
(

∑|p|−1
k=1 d(pk, pk+1)

ρ+1
)1/(ρ+1)

.

3- K is in general not positive definite (p.d.), except
for ρ = 0 (standard RBF) and ρ = ∞ (then Dρ is an
ultrametric and thus negative definite [10], yielding a
p.d. kernel [17]). In practice, negative eigenvalues can
be observed, but they are few and small in absolute
value, as documented in Table 1. In our experiments,
the SVM training still converges quickly. Moreover,
recent papers have argued in favor of the use of non-
positive definite kernels for learning [11, 16].

ρ 0 0.5 1 2 4 8 ∞
ν 0 0.19 2.96 4.66 1.89 0.02 0

Table 1: Empirically found weight on the Coil20

dataset of the negative eigenvalues as percent-
age of the weight of all eigenvalues, ν :=
100

∑

imax(0,−λi)/
∑

i |λi|.

2.2 MARGIN MAXIMIZATION

The Transductive Support Vector Machine (TSVM),
first introduced in [20] and implemented by [3, 12],
aims at minimizing the following functional,

min
1

2
w2 + C

n
∑

i=1

ξi + C∗
n+m
∑

i=n+1

ξi,

under the constraints:

yi (w · xi + b) ≥ 1− ξi 1 ≤ i ≤ n
|w · xi + b| ≥ 1− ξi n+ 1 ≤ i ≤ n+m

.

This can be rewritten without constraint as the mini-
mization of

1

2
w2+C

n
∑

i=1

L(yi(w ·xi+b))+C∗
n+m
∑

i=n+1

L(|w ·xi+b|),

(3)
with L(t) = max(0, 1− t).

Unfortunately, the last term makes this problem non-
convex and difficult to solve [3, 12]. The implemen-
tation of TSVM that we propose in this paper is to
perform a standard gradient descent on (3). However,
since this latter is not differentiable, we replace it by

1

2
w2+C

n
∑

i=1

L2(yi(w ·xi+b))+C∗
n+m
∑

i=n+1

L∗(w ·xi+b),

(4)
with L∗(t) = exp(−3t2) (c.f. Figure 2).

To enforce that all unlabeled data are not put in the
same class, we add the additional constraint,

1

m

n+m
∑

i=n+1

w · xi + b =
1

n

n
∑

i=1

yi. (5)

This is in analogy to the treatment of the min-cut
problem in spectral clustering, which is usually re-
placed by the normalized cut to enforce balanced so-
lutions [13].

Finally, note that unlike traditional SVM learning al-
gorithms, which solve the problem in the dual, we di-
rectly solve the problem in the primal. If we want to
use a non-linear kernel, it is possible to compute the
coordinates of each point in the kernel PCA basis [17].
More directly, one can compute the Cholesky decom-
position of the Gram matrix, K = X̃X̃> and minimize
(4) with xi ≡ (X̃i,1 . . . X̃i,n+m).

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Signed output

Lo
ss

Standard TSVM
Gaussian approximation

Figure 2: TSVM cost functions for unlabeled data.

We decided to initially set C∗ to a small value and
increase it exponentionally to C; thereby following
SVMlight. Note that the choice of setting the final
value of C∗ to C is somewhat arbitrary. Ideally, it
would be preferable to consider this value as a free
parameter of the algorithm.

2.3 IMPLEMENTATION

From the methods discussed above, we derive three
algorithms:

1. graph, training an SVM on a graph-distance de-
rived kernel;

2. ∇TSVM, training a TSVM by gradient descent;

3. LDS (Low Density Separation), combining both of
the previous algorithms.

For SVM, we use the Spider2 machine learning package
for matlab. For ∇TSVM, a conjugate gradient descent
method was used.3

The distance computation for graph can be carried out
using the shortest path algorithm by Dijkstra [9]. For
LDS, the full (n+m)× (n+m) matrix Dρ of pairwise
distances has to be computed.

2available at http://www.kyb.tuebingen.mpg.de/bs/
people/spider

3available at http://www.kyb.tuebingen.mpg.de/bs/
people/carl/code/minimize

10
0

10
2

10
4

10
0

10
1

10
2

10
3

10
4

TSVM Grad

T
S

V
M

 J
oa

ch
im

s

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

TSVM Grad

T
S

V
M

 J
oa

ch
im

s

Figure 3: Each point represents the values of the objec-
tive function reached by the TSVM and ∇TSVM for some
value of C, σ. Points above the diagonal mean that
∇TSVM found a better local minimum. Left: Coil20

dataset, right: g10n (both described below).

Since the derived kernel is (in general) not positive def-
inite, we can apply Multidimensional Scaling (MDS)
[8] to find a Euclidean embedding of Dρ before apply-
ing∇TSVM. The embedding found by the classical MDS
are the eigenvectors corresponding to the positive
eigenvalues of −HDρH, where Hij = δij − 1/(n+m).
For computational reasons, we decided to take only
the first p eigenvectors such that

p
∑

i=1

λi ≥ (1− δ)
∑

max(0, λi) and λp ≤ δλ1, (6)

with decreasing eigenvalues λ1 ≥ . . . ≥ λn+m.

We compare our algorithms to one state of the art su-
pervised method, SVM, and to two state of the art semi-
supervised methods, the TSVM optimization scheme
as implemented in SVMlight [12] and a graph-based
manifold learning, which is closely related to those in
[1, 22, 23]. More precisely, we estimate the labels of
the unlabeled points by minimizing the functional

n
∑

i=1

(fi − yi)
2 +

λ
∑

i,j wij

n+m
∑

i,j=1

(fi − fj)
2wij , (7)

where wij = exp(−||xi − xj ||2/2σ2) if xi is among
the k nearest neighbors of xj (or vice-versa), and 0
otherwise. This methods depends on the sparsity of
the graph.

Figure 3 compares how both implementations of
TSVM are able to minimize the cost function (3). Note
that our proposed implementation does not minimize
(3), but the differentiable approximation (4) and for
this reason it has a disadvantage in the comparison
shown in Figure 3. Nevertheless, on average it pro-
duces better values of the objective function, which
translate, as we will see later, into better test errors.

2.3.1 Computational Complexity

We implement the search for the next-closest un-
explored node in Dijkstra’s algorithm with a prior-

ity queue based on a binary heap. This results in
O (|E| log(n+m)) run time for computing the path
distances of one labeled point to all other points. Thus,
the entire matrix Dρ costs O (nk(n+m) log(n+m))
on a k-NN graph.

The time complexity of a gradient descent algorithm
is approximately equal to that of evaluating the cost
function multiplied by the square of the number of
variables. For ∇TSVM , this amounts to O

(

(n+m)3
)

.
The MDS is of the same time complexity, since it com-
putes the eigendecomposition of an (n+m)× (n+m)
matrix. For both algorithms, the complexity can be
reduced if one considers only the first p eigenvectors.

While ∇TSVM needs to store the entire kernel matrix
(on both labeled and unlabeled points), for graph an
n × (n + m) part is sufficient. Memory can be re-
duced to the n×n part required for SVM training, but
the (worst case) time required to compute individual
shortest paths is as much as is required for computing
all paths from a single source to all targets. For both
SVM and TSVM, in practice only parts of the kernel ma-
trices have to be (computed and) stored, because of
the sparsity of the solution.

For training the manifold algorithm as given in Eq. 7,
a sparse (n+m)×(n+m) matrix needs to be stored and
inverted. Due to the use of a k-NN graph, the matrix
has about k(n+m) entries (at most 2k(n+m)).

2.3.2 Parameters

For each algorithm, the values for a number of param-
eters have to be fixed. In practical applications, this
is usually done by cross-validation (CV). While this is
no major problem for two parameters (like the SVMs
have), it is impractical for the five parameters of the
graph algorithm. To reduce this number, we fix three
of them in advance, as shown in the table:

algorithm free parameters; [fixed parameters]
SVM σ, C
TSVM σ, C
manifold σ, k, λ
∇TSVM σ, C
graph C, ρ; [σ =∞, k = n+m, δ = 0.1]
LDS C, ρ; [σ =∞, k = n+m, δ = 0.1]

Figure 4 demonstrates that for LDS the parameter fix-
ing proposed above leads only to a minor loss in ac-
curacy. As shown in (a), a fully connected graph is
good (for the optimum value of ρ). As shown in (b),
σ = ∞ (i.e. no further non-linear transformation) is
good (again, for the optimum value of ρ). In general
the resulting kernel will not be positive definite (ex-
cept for ρ = 0 and ρ =∞, see also Table 1). As shown
in (c), the SVM seems to handle negative eigenval-

ues reasonably well. This can be seen on the right of
(c): almost the same results were obtained with and
without MDS. It seems safe to discard the eigenvectors
corresponding to small (positive) eigenvalues (c.f. left
side of the plot (c)). In the rest of the experiments,
we set δ = 0.1.

To determine good values of the remaining free pa-
rameters (eg, by CV), it is important to search on the
right scale. We therefore fix default values for C and
σ that have the right order of magnitude. In a c-class
problem, we use the 1/c quantile of the pairwise dis-
tances Dρ

i,j of all data points as the default for σ. The

default for C is the inverse of the empirical variance s2

of the data in feature space, which can be calculated
by s2 = 1

n

∑

iKii− 1
n2

∑

ij Kij from a n×n kernel ma-
trix K. Below, all values for these parameters will be
given relative to the respective default values, making
them comparable for different data sets.

2.3.3 LDS algorithm

The final LDS algorithm is summarized in Figure 1.
Note that slight changes are required for the extreme
settings of ρ: for ρ = 0, steps 1 to 3 have to be replaced
by simply running the shortest path algorithm on
d(i, j) to compute di,j ; for ρ = ∞, a modified version
of Dijkstra that keeps track of maximum distances in-
stead of sums along paths must be used. A matlab im-
plementation of LDS can be obtained at http://www.
kyb.tuebingen.mpg.de/bs/people/chapelle/lds/.

3 EXPERIMENTAL RESULTS

3.1 DATA SETS

In order to get a good picture of the effectiveness of
the algorithms, we compare their generalization per-
formance on two artificial and three real world data
sets with different properties.

data set classes dims points labeled
g50c 2 50 550 50
g10n 2 10 550 50
Coil20 20 1024 1440 40
Text 2 7511 1946 50
Uspst 10 256 2007 50

The artificial data sets are inspired by [2]: the data
are generated from two standard normal multi-variate
Gaussians. In g50c, the labels correspond to the Gaus-
sians, and the means are located in 50-dimensional
space such that the Bayes error is 5%. In contrast,
g10n is a deterministic problem in 10 dimensions,
where the decision function traverses the centers of
the Gaussians (thus violating the cluster assumption),
and depends on only two of the input dimensions.

 0 0.5 1 2 4 8 16 32 Inf
0.05

0.1

0.15

0.2

0.25

0.3

ρ

T
es

t e
rr

or

10 NN
100 NN
Fully connected

 0 0.5 1 2 4 8 16 32 Inf
0.05

0.1

0.15

0.2

0.25

0.3

ρ

T
es

t e
rr

or

Default σ
σ = ∞

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

1/δ

M
ea

n
sq

ua
re

d
di

ffe
re

nc
e

(a) (b) (c)

Figure 4: Influence of parameter choice on the test error of LDS on the Coil20 data: (a) the graph structure;
(b) σ; and (c) the approximation accuracy of the MDS. Plot (c) shows the square difference between the test
error achieved with and without MDS, averaged over different values of C and ρ.

Algorithm 1 LDS algorithm

Require: ρ, C
Compute ρ-distances:

1: Build a fully connected graph with edge lengths wij = exp(ρd(i, j))− 1.
2: Use Dijkstra’s algorithm [9] to compute the shortest path lengths dSP (i, j) for all pairs of points.

3: Form the matrix D of squared ρ-path distances by Dij =
(

1
ρ log(1 + dSP (i, j))

)2

.

Perform multidimensional scaling:

4: UΛU> = −HDH, where Hij = δij − 1/(n+m).
5: Find the threshold p such that (6) holds.
6: The new representation of xi is x̃ik = Uik

√
λk, 1 ≤ k ≤ p.

Train TSVM:

7: for i=0 to 10 do
8: Set C∗ = 2i−10C
9: Minimize by gradient descent (3) under constraint (5).

10: end for

The real world data sets consist of two-class and multi-
class problems. In Coil20, the data are gray-scale
images of 20 different objects taken from different an-
gles, in steps of 5 degrees [15]. The Text dataset are
the classes mac and mswindows of the Newsgroup20

dataset preprocessed as in [18]. Finally, our Uspst

set contains the test data part of the well-known USPS

data on handwritten digit recognition.

3.2 EXPERIMENTS

For each of the data sets, 10 different splits into labeled
and unlabeled points were randomly generated. We
took care to include at least one point of each class in
the labeled set (two for Coil20).

We used a different model selection strategy for LDS

than for the other algorithms. For LDS, we carry out 5-
fold cross-validation (CV) on the training set for each
split, thereby simulating the real world application sce-
nario. Note that all data (training and test) can be
(and is) used as unlabeled data. The reported test

errors are obtained after training the selected model
on the entire training set. For the other algorithms,
we are interested in the best possible performance, and
simply select the parameter values minimizing the test
error. In both cases, we select combinations of values
on a finite grid as follows:

parameter values
width σ 2−3, 2−2, 2−1, 20, 21, 22, 23

exponent ρ 0, 20, 21, 22, 23, 24,+∞
penalty C 10−1, 100, 101, 102

degree k 10, 100, all
regulariz. λ 4−2, 4−1, 40, 41, 42

Although LDS and graph work with any kernel, we here
fix the linear kernel (σ =∞; c.f. section 2.3.2).

3.3 RESULTS

The results are presented in Table 2. Except for the
data set g10n, LDS always achieves lower test errors
with empirically found parameter settings than all the

 0 1 2 4 8 16 Inf
0

0.1

0.2

0.3

0.4

0.5

0.6

ρ

C
ro

ss
 v

al
id

at
io

n
er

ro
r

Coil20
g50c
g10n
Text
Usps

Figure 5: Cross-validation error (with standard devi-
ation error bars) as a function of the parameter ρ.

other algorithms are capable of achieving, even when
optimal parameter settings are known. This clearly
demonstrates the superiority of LDS.

Although ∇TSVM always performs better (and usually,
significantly better) than TSVM, it still fails to reach
the level of manifold on the Coil20 data set. But
this shortcoming is eliminated by making use of the
graph transform of the distances.

To better understand the role of the distance trans-
form, we depict the 5-fold cross validation error for
the best value of C, averaged over the 10 splits, as a
function of ρ in Figure 5. We can distinguish three
cases: the minimum is (i) at or close to 0; (ii) at or
close to ∞; or (iii) somewhere in between.

(i) Linear classifiers are optimal by construction for
the artificial data, and likely to be optimal for Text

due to the high dimensionality. For g50c and Text,
ρ > 0 does not substantially help ∇TSVM, but does not
hurt either. Only for g10n, where the cluster assump-
tion does not hold, increasing ρ immediatly increases
the test error. (ii) In Coil20, the points of each class
lie eqi-distantly on a ring. With ρ = ∞, all their
pairwise distances are reduced to the distance of two
neighboring points. Note that there is no noise which
could cause unwanted bridging between two classes.
(iii) Perhaps the most interesting case is Uspst, with
an optimum of ρ = 4. While there definitely are clus-
ters corresponding to the classes, there seem to exist
outliers that would, for too large ρ, lead to erroneous
merging of clusters.

As the optimum value of ρ seems to correspond to fea-
tures of the data set, prior knowledge on the data could
possibly be used to narrow the range to be searched.

4 CONCLUSIONS

The TSVM objective function could, at a first sight,
be interpreted as a straight-forward extension of the
maximum margin principle of SVM to unlabeled data.
We conjecture that it actually implements two differ-
ent principles: the regularization by margin maximiza-
tion on the labeled points, and the cluster assumption
by margin maximization on the unlabeled points. The
latter does not lead to smoother decision functions,
but it enforces that the decision boundary lies in low
density regions.

The strength of our gradient descent approach might
be that it directly optimizes the objective according
to the cluster assumption: to find a decision bound-
ary that avoids high density regions. In contrast,
TSVM (SVMlight implementation) might suffer from
the combinatorial nature of its approach. By decid-
ing, from the very first step, on the putative label of
every point (even though with low confidence), it may
lose important degrees of freedom at an early stage,
and get trapped in a bad local minimum.

The pairwise distances computed by the graph algo-
rithm attempt to reflect the cluster assumption: dis-
tances of points from the same cluster are shrunk,
while for points in different clusters they are dom-
inated by the inter-cluster distance. Used with an
SVM, this clearly improves over standard (Euclidean)
distances, but not over other semi-supervised methods.

The combination of the graph distance computation
with the TSVM training yields a clearly superior semi-
supervised algorithm. Apparently the preprocessed
distances make it less likely for the TSVM to get stuck
in very suboptimal local minima. Probably the prepro-
cessing widens small density valleys so that they are
more readily found by local searches.

Although manifold learning indirectly exploits the
cluster assumption, as argued above, another feature
may contribute to its successes. If the intrinsic dimen-
sionality of the data manifolds is much smaller than
that of the input space, restricting the learning process
to the manifolds can alleviate the “curse of dimension-
ality”. We plan to investigate how much performance
can be gained in this manner.

Future work will be on a thorough comparison of dis-
criminative semi-supervised learning methods. We ob-
serve that the time (and to some degree, also space)
complexities of all methods investigated here prohibit
the application to really large sets of unlabeled data,
say, more than a few thousand. Thus, work should
also be devoted to improvements of the computational
efficiency of algorithms, ideally of LDS.

methods from literature proposed methods
data set SVM manifold TSVM graph ∇TSVM LDS

Coil20 24.64% 6.20% 26.26% 6.43% 17.56% 4.86%
g50c 8.32% 17.30% 6.87% 8.32% 5.80% 5.62%
g10n 9.36% 30.64% 14.36% 9.36% 9.82% 9.72%
Text 18.87% 11.71% 7.44% 10.48% 5.71% 5.13%
Uspst 23.18% 21.30% 26.46% 16.92% 17.61% 15.79%

Table 2: Mean test error rates. Note that model selection was done by cross-validation for LDS whereas by
minimizing the test error for the other methods. Bold numbers are statistically significantly (95% confidence)
better compared to all other methods.

Acknowledgements

We thank Bernhard Schölkopf and Matthias Hein for
valuable comments.

References

[1] M. Belkin, I. Matveeva, and P. Niyogi. Regu-
larization and semi-supervised learning on large
graphs. In COLT, 2004.

[2] Y. Bengio and Y. Grandvalet. Semi-supervised
learning by entropy minimization. In NIPS, vol-
ume 17, 2004.

[3] K. Bennett and A. Demiriz. Semi-supervised sup-
port vector machines. In NIPS, volume 12, 1998.

[4] O. Bousquet, O. Chapelle, and M. Hein. Measure
based regularization. In NIPS, 2004.

[5] O. Chapelle. Support Vector Machines: Induction

Principle, Adaptive Tuning and Prior Knwoledge.
PhD thesis, LIP 6, 2003.

[6] O. Chapelle, J. Weston, L. Bottou, and V. Vap-
nik. Vicinal risk minimization. In NIPS, vol-
ume 13, 2000.

[7] O. Chapelle, J. Weston, and B. Schölkopf. Clus-
ter kernels for semi-supervised learning. In NIPS,
volume 15, 2002.

[8] T. F. Cox and M. A. Cox. Multidimensional Scal-

ing. Chapman & Hall, 1994.

[9] E. W. Dijkstra. A note on two problems in con-
nection with graphs. Numerische Math., 1:269–
271, 1959.

[10] B. Fischer, V. Roth, and J. M. Buhmann. Clus-
tering with the connectivity kernel. In NIPS, vol-
ume 16, 2004.

[11] B. Haasdonk. Feature space interpretation of
SVMs with indefinite kernels. IEEE TPAMI,
2004. In press.

[12] T. Joachims. Transductive inference for text
classification using support vector machines. In
ICML, pages 200–209, 1999.

[13] T. Joachims. Transductive learning via spectral
graph partitioning. In ICML, 2003.

[14] R. I. Kondor and J. Lafferty. Diffusion kernels on
graphs and other discrete structures. In ICML,
2002.

[15] S. A. Nene, S. K. Nayar, and H. Murase.
Columbia object image library (coil-20). Techni-
cal Report CUCS-005-96, Columbia Univ., USA,
February 1996.

[16] C. S. Ong, X. Mary, S. Canu, and A. J. Smola.
Learning with non-positive kernels. In ICML,
pages 639–646, 2004.

[17] B. Schölkopf and A. J. Smola. Learning with Ker-

nels. MIT Press, Cambridge, MA, 2002.

[18] M. Szummer and T. Jaakkola. Partially labeled
classification with markov random walks. In
NIPS, volume 14, 2001.

[19] J. B. Tenenbaum, V. de Silva, and J. C. Langford.
A global geometric framework for nonlinear di-
mensionality reduction. Science, 290(5500):2319–
2323, 2000.

[20] V. Vapnik. Statistical Learning Theory. John Wi-
ley & Sons, 1998.

[21] P. Vincent and Y. Bengio. Density-sensitive met-
rics and kernels. Presented at the Snowbird
Learning Workshop, 2003.

[22] D. Zhou, O. Bousquet, T. Lal, J. Weston, and
B. Schölkopf. Learning with local and global con-
sistency. In NIPS, volume 16, 2003.

[23] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-
supervised learning using gaussian fields and har-
monic functions. In ICML, 2003.

