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Abstract

Modelling structured multivariate point pro-
cess data has wide ranging applications like
understanding neural activity, developing
faster file access systems and learning depen-
dencies among servers in large networks. In
this paper, we develop the Poisson network
model for representing multivariate struc-
tured Poisson processes. In our model each
node of the network represents a Poisson pro-
cess. The novelty of our work is that wait-
ing times of a process are modelled by an ex-
ponential distribution with a piecewise con-
stant rate function that depends on the event
counts of its parents in the network in a gen-
eralised linear way. Our choice of model al-
lows to perform exact sampling from arbi-
trary structures. We adopt a Bayesian ap-
proach for learning the network structure.
Further, we discuss fixed point and sampling
based approximations for performing infer-
ence of rate functions in Poisson networks.

1 Introduction

Structured multivariate point processes appear in
many different settings ranging from multiple spike
train recordings, file access patterns and failure events
in server farms to queuing networks. Inference of the
structure underlying such multivariate point processes
and answering queries based on the learned structure
is an important problem. For example, learning the
structure of cooperative activity between multiple neu-
rons is an important task in identifying patterns of
information transmission and storage in cortical cir-
cuits [Brillinger and Villa, 1994, Aertsen et al., 1989,
Oram et al., 1999, Harris et al., 2003, Barbieri et al.,
2001, Brown et al., 2004]. Similarly, learning the access
patterns of files can be exploited for building faster file

access systems.

Consider V time series of events ti. We would like to
find a compact representation of the joint probability
distribution of the V time series. Assuming each time
series is modelled by an inhomogeneous Poisson pro-
cess, a unique representation is obtained in terms of
V rate functions λi(t) each of which depends on all
events of the V times series up to time t. Clearly, we
need further assumption on the rate functions to infer
the rate functions from a finite amount of data. The
proposed approach makes four crucial assumptions:

1. The rate function of each process depends only on
the history in a short time window into the past.

2. The rate function of each process depends only
on a small number of other processes. Adopting
a directed graph notation, these are also referred
to as parent nodes.

3. The rate function of each process depends only on
the empirical rates of its parents.

4. The rate function of each process is parameterised
by a generalised linear model.

The standard approach adopted in modelling such
time series is by discretising the time axis into in-
tervals of fixed length δ and transforming the time
series into a sequence of counts per interval. The de-
pendency structure between nodes of such a network,
which is also known as a dynamic Bayesian network
(DBN) [Dean and Kanazawa, 1989, Murphy, 2001],
can be modelled using transition probabilities between
states at time t and t + δ given the states of all the
parents of each node at time t. This approach suffers
from the problem that the discretisation is somewhat
arbitrary: A small value of δ will result in a redundant
representation and a huge computational overhead but
a large value of δ may smooth away important details
in the data.



We overcome the issues of discretisation by consider-
ing the limit δ → 0 and thus modelling the waiting
time in each time series directly. Nodelman et al.
[2002] and Nodelman et al. [2003] use a similar continu-
ous time approach for modelling homogeneous Markov
processes with a finite number of states. In their
work the rate functions depend on the current state of
the parents only which leads to an efficient and exact
learning algorithm. In our setup, we model the wait-
ing times as an exponential distribution with piecewise
constant rates that depend on the count history of par-
ent nodes.

The paper is structured as follows: In Sec. 2 we in-
troduce our Poisson network model. In Sec. 3 we
describe an efficient technique for performing exact
sampling from a Poisson network. We describe pa-
rameter estimation and structure learning using ap-
proximate Bayesian inference techniques in Sec. 4. In
Sec. 5 we discuss approximate marginalisation and in-
ference based on sampling and fixed point methods.
Finally, we describe experiments on data generated
by our sampling technique for performing parameter
learning, structure estimation and inference in Sec. 6.

2 The Poisson Network Model

Consider time series data ti ∈ (R+)Ni from V point
processes. Each element of ti = [ti,1, . . . , ti,Ni ] corre-
sponds to series of times ti,j at which a particular event
occurred. We model each time series as an inhomoge-
neous Poisson process and the modelling problem is to
capture the dependency between different processes,
both qualitatively (structure) and quantitatively (pa-
rameters).

A Poisson process is an instance of a counting process
which is characterised by a rate function λ(t). If the
rate function is constant over time, the Poisson process
is called homogeneous, otherwise it is called inhomo-
geneous [Papoulis, 1991]. A very useful property of a
homogeneous Poisson process is that the waiting time
between two consecutive events is exponentially dis-
tributed with rate λ, that is,

∀t ∈ R+ : p(t|λ) := λ exp(−λt) .

Note that the mean of the waiting time distribution is
given by λ−1.

The waiting time distribution for a non-homogeneous
process is a generalized exponential distribution. In
the special case of a piecewise constant rate function
λ(t), the waiting time has a piecewise exponential dis-
tribution.

Proposition 1 (Piecewise Exponential Distribu-
tion). Suppose we are given l rates λ ∈ (R+)l and l
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Figure 1: Illustration of a Poisson network with a cy-
cle unwrapped in time. Note that we use dashed lines to
indicate parent relationships in Poisson networks. These
arrows should always be interpreted as pointing forward in
time.

sets Tk of non-overlapping intervals where the aver-
age waiting time in each of the intervals T in Tk is
governed by λk. The waiting time of the piecewise ex-
ponential distribution has the following density:

p(t|λ, T ) :=
l∏

k=1

λk
ak(t,Tk) exp(−λkbk(t, Tk)),

ak(t, Tk) :=
∑

[t0,t1)∈Tk

It∈[t0,t1),

bk(t, Tk) :=
∑

[t0,t1)∈Tk

(t1 − t0)It>t1 + (d− t0)It∈[t0,t1).

In the Poisson network model we aim at modelling
the independence relations between the V processes.
Similarly to Bayesian networks, the independence re-
lations are implicitly represented by the connectivity
of a directed graph. Hence, the network structure
can be fully represented by all parent relationships,
M := {π(i) ⊆ {1, . . . , V }}. Interestingly, the seman-
tics of a parent relationship is slightly different from
Bayesian networks: Since the rate function of each
node only depends on the past history of its parents,
cycles w.r.t. the parent set M are permissible (see Fig-
ure 1).

We model the dependency of a node i on its par-
ents π(i) = {p1, . . . , pmi} by constraining the rate
function λi(t) to be a function of the event counts
of all parents in time windows of length φ, ni(t) :=
[ni,p1(t), . . . , ni,pmi

(t)] where ni,pj represents the num-
ber of events of node pj in the time window [t−φ, t).1

We consider a generalized linear model for the rate
function λ(t) in terms of the counts ni(t). Possible link
functions include the probit or sigmoid function which
exhibit a natural saturation characteristic. However,
in the following we will consider the canonical link

1Note that we will treat φ as a fixed quantity throughout
the paper.



function for the Poisson model resulting in:

λi(t;wi,xi) = exp


wi,0 +

∑

j∈π(i)

wi,jxi,j(t)


 , (1)

where wi,0 represents a bias term and translates into
a multiplicative base rate exp(wi,0). We define

xi,j(t) := ln
(
1 + λ̂i,j(t)

)
,

λ̂i,j(t) :=
ni,j(t)

φ
.

Note that λ̂i,j(t) is the empirical rate of node j w.r.t.
node i. Alternatively, the rate function can be writ-
ten in a way that is more amenable for inference (see
Sec. 5):

λi(t) = exp(wi,0)
∏

j∈π(i)

(
1 + λ̂i,j(t)

)wi,j

.

A positive value for wi,j indicates an excitatory effect
and a negative value corresponds to an inhibitory ef-
fect on the rate. The rate of each node at any given
time instant is a function of the empirical rate of its
parents resulting in an inhomogeneous process. Note
that in practice there are only finitely many different
count vectors due to the finite length time windows.
The piecewise constant characteristic of the rate func-
tion and the absence of cycles in the Poisson network
enables us to do exact sampling (see Sec. 3).

Let us derive the probability distribution of the time
series corresponding at given nodes. Consider the
l − 1th and lth events occurring at times tl−1 and tl in a
given node and the instants at which the count vector
changes in this interval be represented as t̆l,1, . . . , t̆l,kl

.2

The probability density of an event at time tl given
the previous event happened at tl−1 is denoted by
p(tl|tl−1,w,M). This density is a product of probabili-
ties of non-occurrence of an event in each of the disjoint
subintervals, i.e. (tl−1, t̆l,1], (t̆l,1, t̆l,2], . . . , (t̆l,kl−1, t̆l,kl

]
and the probability density of occurrence of an event
at tl in the subinterval (t̆l,kl

, tl]:

p(tl|tl−1,w,M) = λl,kl+1




kl+1∏

j=1

exp (−λl,jτl,j)


 ,

where λl,j is the rate as in (1) for a node which is
a function of the event counts of its parents in the
jth subinterval corresponding to the lth event and the

2We drop the node subscript and suppress the depen-
dence on the time series of all parent nodes for better
readability.
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Figure 2: Poisson networks for illustrating sampling.

durations τl,j are defined by

τl,1 := t̆l,1 − tl−1 ,

τl,j := t̆l,j − t̆l,j−1 , j ∈ {2, . . . , kl}
τl,kl+1 := tl − t̆l,kl

.

The probability density for the time series t =
[t1, . . . , tN ] of a given node is obtained as the product
of the probability densities for each of the mutually
exclusive subintervals (t0, t1], . . . , (tN−1, tN ],

p(t|w, M) =
N∏

l=1

p(tl|tl−1,w,M) , (2)

where the initial time t0 is assumed to be 0.

3 Sampling from a Poisson Network

The piecewise constant behavior of the rate function
λ(t) and the absence of cycles in the network allows
us to perform exact sampling from a Poisson Network.
Let us consider the simple case of sampling from a sin-
gle node network as shown in Fig. 2 (a). Sampling is
straightforward in this case, because the node repre-
sents a homogeneous Poisson process. The standard
way to sample from a homogeneous Poisson process is
to make use of the property that the waiting times be-
tween two adjacent events are iid and are distributed
exponentially with rate parameter λ.

Let us consider a two node network shown in Fig. 2
(b). Sampling for node A can be done in a straight-
forward way as explained above because at any time t,
At is independent of Bt. The rate function for node B
can be calculated using (1) once the whole time series
for node A is known. The rate function for B is piece-
wise constant because of the finite number of events
for node A in the time window [t − φ, t] for varying
t. Sampling from a waiting time distribution with a
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Figure 3: (a) An arbitrary Poisson network. (b) SCC’s indicated by ellipses. (c) Directed acyclic graph C′ represents
the SCC formed by nodes C and D. (d) Topological ordering where the number (1′ and 1 can be sampled independently
of each other in parallel) written adjacent to the node indicates the order.

piecewise constant rate function is done by rejection
sampling. Denote the current value of the rate func-
tion by λ(t) and assume the rate remains unchanged
until time t̂. Sample τ from the waiting time distri-
bution with parameter λ(t). Accept τ if t + τ ≤ t̂
and reject τ otherwise. The sampling time is now up-
dated to t̂ or t + τ depending on whether the sample
is rejected or accepted, respectively.

Now, let us consider a two node network as shown in
Fig. 2 (c) where there exists a cyclic relationship be-
tween nodes A and B. It is worth mentioning again
that node B depends on the event counts of node A
in the past only and vice versa. Sampling from the
nodes cannot be done in an independent way because
of the cyclic relationship. Let the values λA(t) and
λB(t) of the rate functions for nodes A and B, respec-
tively, be calculated by (1) and assume that the rates
remain constant until t̂A, t̂B (excluding the mutual in-
teraction in the future). Sample waiting times τA and
τB for both nodes using the rates λA(t) and λB(t), re-
spectively. The sample corresponding to max(τA, τB)
is rejected because an earlier event at the other node
might have changed the value of the rate function; the
other sample is accepted if it is within the constant
time interval of the firing rate. The sampling time is
updated to min(t̂A, t̂B) or t + min(τA, τB) depending
on whether the other sample was rejected or accepted,
respectively.

This sampling technique can be generalised to an ar-
bitrary number of nodes. We note that the structure
of the network can be made use of in order to per-
form sampling in a very efficient way. The two key
observations are that,

1. Certain groups of nodes have to sampled from in
a synchronized, dependent way because of mutual
dependence of nodes in the group.

2. Sampling has to be done in a certain order.

The first observation is illustrated in Fig. 3 (b) and
such groups of nodes are known as strongly connected
components (SCC) in graph theory [Cormen et al.,
2001]. A strongly connected component is a directed
subgraph with the property that for all ordered pairs
of vertices (u, v), there exists a path from u to v. A
variant of depth first search can be used to find all the
SCCs of a graph. A directed acyclic graph graph is
obtained by replacing each SCC by a single node as
shown in Fig. 3 (c). Now we observe that the nodes
of the directed acyclic graph can be sampled from in
such a way that, when sampling a given node, its par-
ents have been sampled before (see Fig. 3 (d)). Topo-
logical sorting is a method to compute such an order
efficiently (see Cormen et al. [2001]).

4 Parameter Estimation and
Structure Learning

Given time series data T := [t1, . . . , tV ] we are inter-
ested in finding the most plausible structure M∗ and
parameter estimates for w in the linear model of the
rate functions (see (1)). We take a Bayesian approach
to the problem of parameter estimation which, at the
same time, provides a score over structure M by the
marginalised likelihood. We choose a Gaussian prior
distribution over the weights

p(W|M) =
V∏

i=1

N (wi;0, σ2I) .

Using Bayes rule, we obtain the posterior

p(W|T, M) =
p(T|W,M)p(W|M)

p(T|M)
.



The structure learning problem can be written as,

M∗ := argmax
M

p(M |T)

= argmax
M

p(T|M)p(M)

p(T|M) =
V∏

i=1

p(ti|{tj |j ∈ π(i)})

p(M) :=
V∏

i=1

p(π(i)) ,

where we make use of a structural prior p(M) that
factors over the parents of the V nodes. Note that
p(ti|{tj |j ∈ π(i)}) corresponds to (2) marginalised
over w. In contrast to structure learning in Bayesian
networks which requires optimisation over the set of
directed acyclic graphs, no such constraints are im-
posed in Poisson network or continuous time Bayesian
networks [Nodelman et al., 2003]. Hence, the struc-
ture learning problem can be solved by finding the
most likely parents of each node independently. In
theory the exact structure can be learned without re-
gard to the number of parents. However, in practice
the running time of the learning procedure is a func-
tion of the number of parents of a node and hence while
learning structures we fix the maximum number of par-
ents. Now we present two approximate Bayesian infer-
ence techniques for parameter estimation and struc-
ture learning.

4.1 Laplace Approximation

In the Laplace approximation [Kass and Raftery,
1995], the posterior is approximated by a multivari-
ate Gaussian density,

p(wi|T,M) ≈ N (wi;wMAP,Σ) ,

where wMAP is the mode of the posterior,

wMAP := argmax
wi

p(T,wi|M) ,

and the covariance matrix Σ is given by

Σ :=
(−∇∇T

wi
ln(p(T,wi|M))|w=wMAP

)−1
.

The marginalised likelihood can be obtained by,

p(T|M) =
∫

p(T,wi|M) dwi

≈
∫ √

(2π)mi |Σ|N (wi;wMAP,Σ) dwi

=
√

(2π)mi |Σ| .
The mode wMAP is found by the conjugate gradients
algorithm using the gradient of ln(p(T,wi|M)) w.r.t.
w (see also (2)).

4.2 Variational Approach

The variational approach to solving problem of param-
eter estimation and structure learning is to introduce
a family of probability distribution qθ(wi) parame-
terised over θ which gives rise to a lower bound on
the marginalised likelihood3:

ln (p(T|M)) ≥ LM (θ) ,

LM (θ) :=
〈

ln
(

p(wi|M)
qθ(wi)

)〉

qθ

+ 〈ln (p(T|wi,M))〉qθ ,

which follows from an application of Jensen’s inequal-
ity to the concave logarithm function [Jordan et al.,
1999]. This lower bound on the log-marginal probabil-
ity is a function of the parameters θ of the distribution
q. This bound is tight if we choose qθ(wi) to be the
true posterior p(wi|T,M). We also observe that the
lower bound is the sum of two terms which correspond
to the negative of the Kullback-Leibler divergence be-
tween the prior term and the distribution qθ(wi) and
the second term is the log-likelihood of the data aver-
aged over qθ(wi).

The idea of the variational approximation Bayesian
algorithm is to maximize the lower bound LM with
respect to the parameters of the q distribution. The
structure learning problem can be posed as maximiza-
tion of the lower bound LM (θ) which can be written
as,

M∗ := argmax
M

[
max
θ

LM (θ)
]

.

Similar to the Laplace approximation, we choose
qθ(wi) to be a multivariate GaussianN (wi; µ,Σ). For
a given network structure M , we can use conjugate
gradients to find the maximum of LM (µ,Σ). Note
that the gradients are given by

∇µ(LM (µ,Σ)) = −µ +
N∑

i=1

xi,ki . . .

−
N∑

i=1

ki∑

j=1

τi,jxi,j exp

(
xT

i,jΣxi,j + 2µT xi,j

2

)
,

∇Σ(LM (µ,Σ)) = − 1
2σ2

I +
1
2

(Σ)−T . . .

−
N∑

i=1

ki∑

j=1

1
2
τi,jxi,jxT

i,j exp

(
xT

i,jΣxi,j + 2µT xi,j

2

)
.

5 Inference in a Poisson network

Once the network structure and parameters are
learned, several queries regarding the distribution rep-
resented by the network can be answered. A common

3We use the shorthand notation 〈f(·)〉q to denote an
expectation of f w.r.t. the distribution q.



inference problem that is encountered in a Bayesian
network is one where data is available for some nodes
(denoted by MD), there are a few query nodes (de-
noted by MQ) whose behavior has to be estimated
from the data and the remaining nodes are hidden
nodes (denoted by MH for which no data is available.
We pose an analogous problem for Poisson networks.
The rate of any arbitrary node can be computed if the
time series data for all its parents are known for the pe-
riod of interest. However, certain configurations of the
problem involving hidden nodes are not easy to solve
because of the problem of entanglement as mentioned
in Nodelman et al. [2002]. The standard procedure
in a Bayesian network is to marginalise over all the
hidden nodes and obtain an estimation for the query
nodes using the data in observed nodes. Marginalis-
ing over a hidden node amounts to integrating over
all possible time series for a particular node which,
in general, is impossible. Hence, approximations are
necessary.

5.1 Inference by Sampling

A straightforward way to solve the inference problem is
to perform marignalisation of the hidden nodes by us-
ing a few instantiations of them which can be obtained
by sampling from the network. The samples can then
be used to obtain averaged rate estimates at each of
the query nodes. The sampling procedure is the same
as our procedure in Sec. 3 with a minor modification
that the sampling is to be performed conditioned on
the data that has been observed in the data nodes
MD. We observe that if the data for a node i is com-
pletely known, then the parent nodes of i do not have
any influence on i in the subsequent sampling process.
Hence, we can safely remove all the parental relation-
ships for all the fully observed nodes and obtain a new
network M ′ = M − {i → j, i ∈ MD, j ∈ π(i)}. Sam-
pling is done from the new network M ′ for all the
unobserved nodes and then average firing rates can be
obtained for all the query nodes.

5.2 Estimation of Steady State Rate

An alternative way to solve the inference problem is to
approximate the empirical rate λ̂ with a steady state
rate. According to our model, the rate of a node can
be written as,

λi(t) = exp


wi,0 +

V∑

j=1

(
wi,j ln

(
1 + λ̂i,j(t)

))

 . (3)

We notice that this is (1) if we consider wi,j = 0 for
all the pairs of nodes which are not dependent. The
empirical rate λ̂i,j(t) cannot be obtained unless the

21

543

Figure 4: The random Poisson network graph that gen-
erated the samples in Fig. 5. Red arrow indicates an in-
hibitory influence and the blue arrow indicates an excita-
tory influence.

whole time series is observed. Hence, we approximate
the empirical rate by the true rate,

λ̂i,j(t) =
ni,j(t)

φ
≈ 1

φ

∫ t

t−φ

λj(t̃)dt̃ ≈ λj(t) ,

where we assume that the length of time window, φ,
is very small. Substituting back in (3) we obtain

ln(λi(t)) ≈ wi,0 +
V∑

j=1

wi,j ln (1 + λj(t)) . (4)

We make the assumption that the rate is constant in
the time interval [t−φ, t] and hence the Poisson process
of each of the parents j, j ∈ {1, . . . , V } is assumed
to be a homogeneous Poisson process with rate λj(t).
Now, (4) can be constructed for all nodes that are
not observed and the set of equations have the form
λ(t) = F (λ(t)), F : RV → RV , whose solution are
the fixed points of the system. We perform fixed point
iterations starting from randomly initialized values for
λi(t), i ∈ {1 . . . V }. In experiments we observe that
at convergence, the estimated rate corresponds to the
mean rate in the time interval [t−φ, t] calculated from
actual data.

6 Experimental Results

In this section, we test the presented methods on data
sampled using the algorithms from Sec. 3. We show
experiments of approximate inference of rate using a
sampling based approximation and a fixed point ap-
proximation.

Sampling Firstly, we generate a random graph (see
Fig. 4) with V nodes. As mentioned before, because of
computational issues we fix the maximum number of
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Figure 5: Samples generated from a random network with
V = 5 and maximum number of parents is 2

parents πmax for every node. Now, our efficient sam-
pling technique given in Sec. 3 is used to generate sam-
ples from the network. Samples generated from a ran-
domly generated network with V = 5 and πmax = 2 is
as shown in Fig. 5. The time window duration φ was
fixed to 1 second.

Parameter estimation and structure learning
The Laplace and variational approximation developed
in Sec. 4.1 and Sec. 4.2 are tested using samples gen-
erated from random graph structures. We observed
that the posterior distribution p(wi|T,M) can be
approximated very well by a multivariate Gaussian.
Thus, both approximations methods perform very ac-
curately. Fig. 6 shows the parameter estimation and
structure learning results obtained using variational
approximations for a 15 node network with maximum
number of parents restricted to 2. The results indicate
that the few edges that were missed by the structure
learning algorithm (circles) correspond to weak depen-
dencies i.e., edges with weights close to zero. The re-
sults of the Laplace approximation is similar to the
variational approximation except that the variational
approximation had higher confidence in its estimate.

Approximate Inference of rates The approxi-
mate inference techniques developed in Sec. 5 was
tested on a random graph having 10 nodes. Samples
were generated from the network using our sampling
technique. Nodes were chosen at random and marked
as observed, hidden and as query nodes. The inference
task was to estimate rates for all the nodes marked
as query nodes. The samples generated for the ob-
served nodes were made use of to perform inference
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Figure 6: Results for parameter estimation and structure
learning using the variational approximation for a network
with 15 nodes in which maximum number of parents is 2.
Each node i with a parent j has a true expected weight
wi,j (x-axis) and a posterior estimate (y-axis) shown as a
5%-95% posterior quantile interval with a mark indicating
the mean. The empty circles indicate the edges that were
not identified by the structure learning algorithm.

of rates using the sampling based approximation and
the fixed point approximation. The results shown in
Fig. 7 shows that the fixed point approximation tech-
nique (which is significantly faster than the sampling
based approximation) closely tracks the true rate.

7 Conclusions and Discussion

Poisson networks are models of structured multivariate
point processes and have the potential to be applied
in many fields. They are designed such that sampling
and approximate learning and inference are tractable
using the approaches described above. In particular,
structure learning is carried out in a principled yet
efficient Bayesian framework.

Future applications of the Poisson network model in-
clude biological problems such as analysing multiple
neural spike train data Brown et al. [2004] as well as
application in computer science such as prediction of
file access patterns, network failure analysis and queu-
ing networks.

A promising direction for future research is to combine
Poisson networks with continuous time Bayesian net-
works in order to be able to model both event counts
and state (transitions). For example, consider file ac-
cess events and the running states of CPU processes.
Clearly, they exhibit an interesting relationship the
discovery of which would it possible to predict and
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Figure 7: Inference of rate functions

hence optimise process-file interactions. Similarly, in
biological application external stimuli can be modelled
as states influencing physiological events such as neu-
ral spike activity.

Finally, it would be of great interest to study the infor-
mation processing potential of Poisson networks in the
sense of artificial neural networks (see Barber [2002]).
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