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Abstract

We present an algorithm, “Probing”, which
reduces learning an estimator of class prob-
ability membership to learning binary classi-
fiers. The reduction comes with a theoreti-
cal guarantee: a small error rate for binary
classification implies accurate estimation of
class membership probabilities. We tested
our reduction on several datasets with sev-
eral classifier learning algorithms. The re-
sults show strong performance as compared
to other common methods for obtaining class
membership probability estimates from clas-
sifiers.

1 Introduction

Background. Classifier learning is the problem of in-
ducing a predictor for distinguishing between two (or
a few) classes given a set of labeled training examples.
There are many reasons for considering classifier learn-
ing as the most fundamental learning task. Predicting
one bit (or a few bits) is as simple as non-trivial pre-
diction can be. Because of this simplicity, classifier
learning is often more amenable to study than other
learning problems. On the practical side, several fast
learning algorithms (such as SVM [13], boosting [6]
on decision trees [14], and neural networks [9]) exist
which generally lead to classifiers with excellent pre-
dictive performance.

The Problem. On the other hand, there are sev-
eral real-world applications requiring probabilistic an-
swers instead of discrete class labels. For example, in
medical domains, doctors often prefer to make deci-
sions based upon probabilistic predictions of the pa-
tient state, rather than being given a discrete chosen
action for each patient. Even when the actual proba-
bility estimates are not required, a ranking of exam-
ples from the most likely member to the least likely
member of a class may be desirable. This is the case,
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for example, in document categorization, where users
might like to see a list of documents ranked by their
relevance to a particular topic.

Probability estimates are also important when the
classification outputs are not used in isolation but
are combined with information from other components
in a system. For example, in handwritten character
recognition the outputs from the classifier are used
as input to a high-level system which incorporates
domain information, such as a language model. In
this case, probabilities provide a standard language for
summarizing information from multiple sources into a
single decision. When the components of the system
are distributed, bandwidth constraints may make this
summarization necessary as well as standard.

Solution Sketch. Our method for answering the
needs of these real-world applications can be thought
of as a reduction of class probability estimation to clas-
sifier learning. The reduction (which we name “Prob-
ing”) satisfies strong optimality guarantees: good per-
formance with respect to classification implies good
performance with respect to class probability estima-
tion. The essential observation underlying the Probing
reduction is that probability estimates (in a Bayesian
sense) can be extracted from preferences over bets
at different odds ratios. The machinery that applies
this observation to classifier learning algorithms is the
Probing reduction.

2 Related Work

There are several existing approaches for obtaining
class probability estimates from classifiers.

Bagging. One common approach uses bagging [12].
Essentially, the learning algorithm is run on many
training sets formed by sampling with replacement
from the original dataset, and the estimated proba-
bility that any sample x has label y = 1 is the pro-
portion of learned classifiers that output 1 for z. The
results of the bagging approach may have nothing to
do with Pr(, ,y~p(y = 1|z), the probability accord-



ing to the data generation process that y = 1. As
has been observed before, the probability estimates
obtained through bagging are measuring the instabil-
ity of the classifier learning method over data pertur-
bations [10] rather than Pr(, ,)~p(y = 1|z). Indeed,
for larger datasets, bagging with certain learning al-
gorithms might result in the same classifier on every
run, causing the bagging probability to be always 0 or
1 even when the fundamental process is much less cer-
tain. In contrast, our Probing reduction has a simple
guarantee—if the classifiers solve their associated clas-
sification problems optimally, then the reported prob-
ability is precisely Pr(;,)~p(y = 1|z). In addition,
unlike bagging, Probing preserves independence in the
original dataset!, which is quite important for many
learning algorithms (see [17] for further discussion).

Margin Sigmoid. Another approach for extracting
probabilities from classifiers is to take an internal rep-
resentation such as the margin of a support vector
machine and transform it into a value v € [0,1] to
achieve calibration on the training set (for example,
using a sigmoid function [11]). The Probing reduction
is more general (since it applies to classifiers without
an internal margin such as decision trees) and less ad-
hoc. In particular, in the Probing reduction a small
classification error rate necessarily implies good prob-
ability estimates over all distributions generating the
data. No guarantee of this quality can be made for any
transformation of a margin into a [0, 1] interval, essen-
tially because the margin is not a “sufficient statistic”
for probability estimation. See also [2] for a discussion
of sparsity versus probability estimation issues.

Direct Prediction. The third standard approach is
to simply predict probabilities directly, tipically with
some form of learned probabilistic model. Our re-
sults can be viewed from this approach as (1) provid-
ing compatibility between non-probabilistic and prob-
abilistic models and (2) enriching the set of proba-
bilistic models with new and often better performing
models.

We discovered that a reduction similar to Probing had
been published previously by Halck [7]. The main dif-
ference is that Probing reweights the classes appro-
priately to obtain preferences over bets at different
odds ratios (see next section), while Halck’s reduction
changes the labels of examples randomly for the same
purpose. We provide a theoretical performance guar-
antee and present a comprehensive experimental eval-
uation of Probing. Halck’s method may be analyzable
and may have good empirical performance, but the
theory and evaluation have not been done yet.

!Resampling with replacement provides samples from
the correct distribution in a dependent manner.

3 The Probing Reduction

Assume we have examples (z,y) drawn from an un-
known distribution D with domain X x ) where X is
the feature space and Y = {0,1} is the label space.

Basic Observations. The Probing reduction is based
upon the observation that a binary classifier which pre-
dicts 1 for an example x is implicitly predicting that
the probability of class 1 given x is greater than the
probability of class 0 given z, that is, D(y = 1|z) >
D(y = 0|z). Conversely, a classifier which predicts 0
for z suggests that D(y = 0|z) > D(y = 1|z).

By weighting the training examples such that positive
examples are w times more costly to classify incor-

rectly than negative examples, it is possible to learn
classifiers which predict 1 if

1
D(y =1|z) > ——
=12 > o

and 0 otherwise.

Corollary 1 (Minimal Error Probing) Let i,(y) =
%y + (1 —y). Then

arg min B, y)~p ip(y) I(c(x) # y)

=1(D(y =1|z) > p)

except on a set of measure 0.

This corollary only discusses minimal error classifiers,
so it only applies in the asymptotic limit of a bayes
consistent classifier. However, the probing algorithm
can be proved sound even for classifiers with nonmin-
imal error rates. We prove this more general theorem
in section 4 (theorem 2). The corollary states that a
classifier which minimizes a importance weighted loss
can be used to determine if the conditional distribution
D(y = 1]z) is above or below a threshold for a given
value of x, where the threshold depends on the relative
weight given to positive and negative examples.

The Algorithm. Now, suppose that we learn a clas-
sifier ¢, for every choice of p and each of these classi-
fiers has a minimal loss. Then, for an input z, each of
the classifiers answers whether D(y = 1|z) is greater
than the threshold p. For p = 0, we necessarily have
¢p(z) = 1 because D(y = 1|z) cannot be less than 0.
As p grows, the predictions of the subsequent classi-
fiers are monotone in p with one point p* = D(y = 1|z)
where the prediction changes from 1 to 0. Therefore,
the Probing reduction reports:

D(y = 1|z) = p*. (1)
Three issues remain:

1. Not all classifier learners automatically take the
weight w as input. We address this by using the



Algorithm 1 Probing-Learner (classifier learner
A, dataset S = (z,y)™, number of iterations t)

1. Let I ={[0,1]}

2. Fori=1tot

(a) Let [a,b] = minimax interval € T

(C) Let I = (I - {[aa b]}) U {[aap]a [pa b]}
d) Let Sp = {(z,y,ip(y)) : (z,y) € S}
(e) Let ¢, = A(Sp)

(b) Let p = minimax optimal p € [a, b]
(

3. Return all ¢,

Algorithm 2 Probing-Predictor (set of weighted
classifiers ¢,, input z)

1. Let n =3 cp(z)

2. Let [a,b] = the nth interval

3. Return minimax optimal p € [a, b].

costing reduction [17] from importance weighted
classification to binary classification, which ap-
plies to any classifier learner.

2. Learning a classifier for every choice of w is too
computationally intense. We resolve this by dis-
cretizing the set of w and reporting a probability
in the discrete interval.

3. Independently learned sub-optimal classifiers may
not be consistent, meaning that the sequence of
predictions for a given example is not necessarily
monotonic. We simply sort the results of the clas-
sifiers to make the sequence monotonic (all zeros
before all ones). This gives us the solution consis-
tent with the largest possible number of classifiers.
Although this may appear to be a hack, the proof
of theorem 2 fundamentally relies upon the sort.

Learning. The algorithms for learning and making
predictions using the Probing reduction are reported
in figures Algorithm 1 and Algorithm 2. The Probing-
Learner algorithm takes as input a classifier learning
algorithm, a set of training examples and some num-
ber of iterations. On each iteration, it refines the dis-
cretization of the interval with the largest potential
gain from refinement (this is loss dependent, see below
for details). For each chosen interval a minimax choice
of probability and the corresponding weight (obtained
by inverting equation 1) are calculated and a weighted
classifier is learned.

Prediction. The Probing-Predictor algorithm takes
as input the set of weighted classifiers and an input

z. It sums the predictions of each classifier on z to
determine the number of classifiers that predict 1 for
z. It then picks the minimax probability in the nth in-
terval (counting from 0). This is equivalent to sorting
the classifier predictions to obtain monotonicity and
reporting a probability from the interval in which the
prediction changes from 1 to 0.

Loss Details. Steps 2(a) and 2(b) in Probing-Learner
are dependent on the probabilistic loss function of in-
terest. Here we describe these steps for two of the
most commonly used probabilistic loss functions: cross
entropy and squared error. In order to determine
the minimax interval and the minimax probability for
these loss functions, we make the somewhat unjusti-
fied but convenient assumption that all classifiers are
correct.

1. Cross entropy is given by

1
By yopl(y=1)In —— S
@w~pIly =D 2o =)

The minimax optimal p € [a, b] is given by:

+I(y=0)In

minep, 5] MaXpe(q,51[l0SS on P — loss on p

= minpe[q,5 MaXpe[a,p] [PIN % +(1-p)ln 1+;3

1 1
—plnt—(1-p)ln 1_]
['his implies that

. 1
P= —mp—mE@
14e™ #=a
where H(a) is Shannon entropy (in nats) of a coin
with bias a.

The minimax interval is the interval which creates
the largest potential change in loss when refined
on the training set. Suppose we let S, be the set
of training examples whose current probabilistic
prediction is p € [a,b]. The chosen ? interval is:
1—

a a
ol [(L—a)l In -
arg[ﬁ?éc1|5| ( a)nl_ﬁ—l—a nI3

2. Mean squared error is given by
E(z,y)ND[(y - D(y|w))2]
The minimax optimal p € [a, b] is given by:

mingep, 5] MaXpe[q,p)[l0ss on p — loss on p]

— mi NY -2

= mingeq,5 MaXpefa) [P(L — )* + (1 —p)p
~p(1—p)* - (1 - p)p’]

This implies that
p=(a+b)/2.

2Note that the definition p implies this is equivalent to
arg max, pler |Sal [(1 —b)In 11%11; +bln %]



The minimax interval is similarly given by

Sal(b - a).
arg[mbt]lgll (b —a)

)

In a transductive setting, using the test set distribution
to weight the minimax interval is a better than |S,|.

Multiclass Case. For the multiclass case with k > 2
labels, we simply apply the binary method to & — 1
binary problems defined by the mapping:

(z,y) = (2, Il = y))

for k£ — 1 choices of . This method gives us probabil-
ity estimates pi, ..., px—1 for k — 1 classes, so we can
estimate the probability of the last class according to

P =1- Y10 i
4 Analysis of the Probing Reduction

The following theorem shows that the probing reduc-
tion is inherently robust against classification errors.
For the theorem, remember i, (y) = 1_pr+ (1—y) and
let the importance weighted loss of a classifier ¢ under
distribution D be

() = ZipE(z,wNDip(y)f(c(w) £9)

where Z, = E, ,)~p’ ip(y) is a normalization con-
stant.

This theorem analyzes probing in the limit as the num-
ber of classifiers approaches oo uniformly over the unit
interval. Discretization to intervals of size d adds at
most d + d? /4 to the expected squared error.

Theorem 2 (Probing Error Transformation) If the
classifiers ¢, learned under Probing have average rela-
tive importance weighted loss

e=Ey, v, [lp(cp) — mcin I,(c)|,

then
Epp(D(1lfz) - p(@))? < 2max{D(1), D(0)}e < 2
where p(z) is the probing prediction.

This is a strong theorem in the sense that it ties the
error in the probability predictions to the average rel-
ative importance weighted loss of the classifiers. Us-
ing the average loss over w results in a more powerful
statement than using the maximal loss, because it is
easier to obtain a set of classifiers which have small
average loss than to obtain a set of classifiers, all with
a small loss. Using a loss that is relative to the loss
of the Bayes optimal classifier means that the theorem
applies even when the fundamental noise rate is large.

Note that when the proportion of positive and negative
examples is balanced (D(1)=D(0)=0.5) the bound on
the error in the probability predictions is exactly the
average relative importance weighted loss,

Epp(D(1]z) — p(x))* <€
Proof: Let c; = min.[,(c), then

e=Eyv,1 [lp (ep) — lp(C;)]
= By [ By nlis®) U (o) # 9) — 1(c5(2) # )]
= B, | 2 BID(1) 52 (63(0) - co(2)
+D(0]2)(c(3) — 3 (@)]
= B, | £ B.D(112) 52 (6)(2) - ()

+(1 = D(1[2)) (s (@) — c5(@)]
= B, [ 3 Bl((0) - eo(@)(3D(1) ~ D] -

Rewriting with D(1|z) > p = ¢;(x) = 1 and D(1]z) <
p = cy(x) =0, we have

e=Ep [pLZpEw[I(C}?(w) # cn(2)) |D(1]z) —pl]] :

Notice that for all p, Z, = D(0) + D(l)kTp. Hence
pZp, =pD(0) + (1 — p)D(1) < max{D(1), D(0)}

Therefore, we have

EpE,[I(c, # ¢p(2))|D(1]z) — pl] < max{D(1), D(0)},

which can be re-written as
1
E,op / 1(; # (@) D([z) — pldy
< max{D(1), D(0)}e, 2)

Given a fixed budget of € for binary errors, the scenario
which maximizes probability error estimates has all
classifiers erring in one direction (either for p < D(1|z)
or p > D(1|z)) because two errors in different direc-
tions are canceled in the sorting phase of Probing-
Predictor. Furthermore, errors by classifiers nearer to
D(1|z) are preferred to errors far from D(1|z), since
the importance weighted loss payed by the adversary
increases monotonically with distance from D(1|z).
Therefore, when the Probing prediction is p(z), all the
classifiers ¢, for which the corresponding p are between
p(z) and the correct probability D(1|z) give incorrect
predictions whereas the other classifiers give correct
predictions. As a result, the integrand of equation 2
is non-zero only for p(z) < p < D(1|z) (if the clas-
sifiers err in one direction) or D(1]|z) < p < p(z) (if
the classifiers err in the other direction). Thus, we can
re-write equation 2 as

D(1|z)
Eewn| [ ID(1fs) - pldy | < max{(D(1), DO}

()




By solving the integral, we get
Eyznp(D(1]z) — H(2))* < 2max{D(1),D(0)}e. |

In this theorem, we measure the probabilistic loss us-
ing the true distribution D(1|z). Because this distri-
bution is unknown for most real-world problems, it is
important to understand the implications of the the-
orem to metrics that only use the class labels. We
consider these implications for three of these metrics
in the following subsections.

4.1 The squared error metric for
classification

The loss in the squared error metric for classification
is defined as

A

By y~n(y — p(x))”.
Note that
Eyy~p(y — D(1|2))? + (p(z) — D(1]z))*

= EznpD(1]2)[(1 = D(1|2))* + (b(x) — D(1|z))
+(1 = D(1|z))[D(1]z)* + (b(x) — D(1|z))’]

= E,D(1|z)[1 - 2D2(1Iw)] + D(1|z)* + (p(z) — D(1|z))?
= E,D(1|z) + p(z) " 2p(z)D(1|x) ,

= E;(p(z) — D(1|x))" + D(1|z) — D(1|z)

= E.(p(z) — D(1]z))? + C

where C' is some problem dependent constant.

Consequently, optimizing the squared error metric for
classification implicitly optimizes the squared error in
the probability estimate.

4.2 The cross entropy metric for
classification

The loss in the cross entropy metric is E, ypI(y =
1)ln ﬁ +I(y = 0)In #@. Cross entropy differs
fundamentally from the squared error metric because
it is (theoretically) unbounded. Consequently, the op-
timal strategy of an adversarial binary classifier is to
err simultaneously with all classifiers on one side of
D(1|z), producing an unbounded loss when the dis-
cretization goes to 0. For cross entropy we can only
prove a much weaker theorem: minimal error implies
p(x) is optimal up to the discretization.

In practice, this worst case behavior can be avoided.
The asymptote to co is very slow as p(xz) approaches
0 or 1. Consequently, we can project p(z) into the
nearest element in the interval [0.001,0.999] and incur
a maximal loss of about log(1/0.001)e+0.001 = 6.9¢+
0.001 (when D(1) = D(0)), while preserving almost
all of the dynamic range.

4.3 Implications for ordering metrics

Relative Ordering. In some situations, we may be
interested only in the relative ordering or ranking of

examples given by the class probability estimates. Un-
fortunately, very small errors in the ordering with re-
spect to [0, 1] can result in very large misorderings with
respect to a subset of [0, 1] In particular, suppose that
the optimal answer is p(z) = 0.5, but the answer we
provide is p(x) = 0.49999. If every other element in
the ordering is in the interval (0.49999,0.5), then this
small error results in a very large ordering error with
respect to the set of elements.

AUC analysis. Area under the ROC curve (AUC) is
one commonly used relative ordering metric. Suppose
we have one example with label y =1, D(y = 1jz) =1
and Probing estimates P(y = 1|z) = 0, and n exam-
ples with label y = 0, D(Y = 1|z) = 1/n where Prob-
ing estimates P(y = 1|z) = 1/n. In this setting, the
AUC (as defined in [1]) is 0. Despite this terrible per-
formance, the classifiers need err only once. This is
less than any fixed importance weighted loss rate for
sufficiently large n.

5 Experimental Results

Here we present the results obtained by applying the
Probing reduction to fifteen (binary) datasets: eleven
from the UCI machine learning repository [5] (Adult,
Australian Credit, Breast, Diabetes, Echocardiogram,
Hepatitis, Ionosphere, Kr-vs-kp, Liver, Mushroom,
Sick), two from the UCI KDD archive [8] (KDD Cup
98 and COIL) and two from the 2004 KDD Cup (Bi-
ology and Physics).

We use four different base classifier learners available
within the machine learning tool Weka [15]: the J48
decision tree learner, the SMO support vector machine
(SVM) learner (linear kernel), Naive Bayes and logistic
regression. For choosing the weights, we use the Prob-
ing variant that attempts to optimize cross entropy for
100 iterations. For realizing the importance weighted
classification, we use rejection sampling (proportion-
ally to the weights) for the decision tree learner and
for logistic regression, and give the weights directly to
the learners for SVM and Naive Bayes (see [17]).

We are interested in comparing the performance of the
Probing reduction with standard methods for obtain-
ing probability estimates from these classifiers. Deci-
sion trees and Naive Bayes produce an internal score in
the interval [0, 1] that can be used as a class probability
estimate, but they are known to be inaccurate [16]. For
this reason, besides testing their performance, we have
also tested well-known methods for obtaining better
probability estimates from these classifiers: bagging
for decision trees (100 classifiers) and calibration us-
ing a sigmoid function for Naive Bayes [3]. Since the
SVM classifier does not produce probability estimates,
we have tested only the standard method for obtain-
ing probabilities from SVM (also available in Weka):
calibration using a sigmoid function [11].



For datasets that have a standard training/test split
in the UCI repository, we use the standard split. For
the other datasets, we randomly split the data into a
training set with 66% of the examples and a test set
with 33% of the examples.

We use three different metrics for assessing the accu-
racy of the probability estimates: root mean squared
error (RMS), cross entropy (CXE) and area under the
ROC curve (AUC). For more details about these met-
rics and an analysis of their characteristics, see [4].
The results on the test set using CXE, RMS and AUC
are shown, respectively, in tables 1, 2 and 3. Note that
for RMS and CXE the smaller the value the better
the performance, while for AUC the larger the value
the better the performance. Note also that AUC only
measures how well the probability estimates rank the
examples from the most probable to the least prob-
able member of the class, while RMS and CXE also
measure the calibration of the estimates.

Decision tree results. The Probing reduction out-
performs a single J48 classifier for all datasets but
Mushroom and for the majority of the datasets also
outperforms Bagging J48, on the three metrics. A
cross entropy of oo means that the classifier predicted
probability one for an example whose label is zero (or
vice-versa). This is often the case for the J48 classi-
fier, showing that its internal scores are not reasonable
class probability estimates for cross entropy loss. Bag-
ging solves this problem by taking advantage of the
instability of the learner over different training sets to
average out extreme results. However, in cases where
there is no instability (like the KDD Cup 98 dataset)
bagging performs the same as the base classifiers. The
same would be true if we apply bagging to other learn-
ers that are stable such as SVM and Naive Bayes.

SVM Results. The Probing reduction outperforms
the SVM with sigmoid calibration for most datasets
on all three metrics. The AUC metric results show a
greater advantage of Probing over sigmoid calibration
than the two other metrics. This is probably due to the
fact that the sigmoid calibration maintains the same
ranking as given by the SVM margins while Probing
can give a better ranking based on the results of the
different weighted classifiers.

Naive Bayes results. The Probing reduction out-
performs a single Naive Bayes classifier for most
datasets on the cross entropy and squared error met-
rics. On the AUC metric, however, a single Naive
Bayes classifier usually performs slightly better than
Probing Naive Bayes. This may be due to Naive Bayes
estimates ranking well (although with terrible prob-
ability estimates), while Probing estimates have less
resolution leading to more ties. The results also show
that Naive Bayes with sigmoid calibration outperforms
Probing Naive Bayes on most datasets in all three met-
rics. Naive Bayes is not a very accurate classifiers so

Dataset RMS CXE AUC
Adult ProbJ48 ProbJ48 ProbJ48
Australian | ProbJ48 ProbJ48 ProbJ48
Biology SigSVM SigSVM | Prob(J48/Log)
Breast SigNB SigNB ProbNB
COIL ProbJ48 ProbJ48 ProbJ48
Diabetes Log Log ProbSVM
Echocardio SigNB SigNB Log
Hepatitis BagJ48 ProbSVM ProbNB
Tonosphere BagJ48 BagJ48 BagJ48
KDD-98 ProbJ48 ProbJ48 ProbLog
Kr-vs-kp BagJ48 BagJ48 BagJ48
Liver BagJ48 BagJ48 BagJ48
Mushroom | J48/SVM | J48/SVM J48/SVM
Physics ProbJ48 ProbJ48 ProbJ48
Sick BagJ48 BagJ48 ProbJ48

Table 4: Best method per dataset/metric.

the Probing reduction, which relies on that accuracy
for different weight settings, is not optimal. On the
other hand, the sigmoid approach has a separate fit-
ting stage which can repair bad estimates to some ex-
tent. Furthermore, the sigmoid transformation main-
tains approximately the same ranking of examples as
the original Naive Bayes classifier, leading to approxi-
mately the same AUC.

Logistic Regression. The Probing reduction per-
forms better than a single Logistic Regression classifier
for optimizing cross-entropy. In some cases, Logistic
Regression yields a cross entropy of oo, while Probing
gives a reasonable result. For the two other metrics
there is not a clear difference.

To get a better idea of which algorithms are performing
best, we have one last table consisting of the method
that led to best test performance for each metric and
dataset in table 4. Probing wins in 20 out of 45 experi-
ments against the other tested alternatives (J48, Naive
Bayes, Sigmoid Naive Bayes, Sigmoid SVM, Bagged
Decision Tree and Logistic Regression). It is also in-
teresting to note that the performance of the decision
tree, J48, is very good. This may be due?® to the fact
that the other learners that we are using are linear (we
have not tried different kernels for SVM).

Finally, to give an idea of the speed of convergence of
Probing in practice, we plot the cross entropy perfor-
mance (using J48) against the number of Probing iter-
ations for 5 representative datasets in figure 1. Probing
seems to converge to a reasonable probability estimate
after 20 or so iterations.

6 Discussion

Probing is a general technique for converting any
classifier learner into a class probability estimator.

3Tt’s also possible that the design of J48 (which inherits
from C4.5) is overfit to the UCI datasets.



Dataset J48 BagJ48 | ProbJ48 || SigSVM | ProbSVM NB | SigNB | ProbNB Log | ProbLog
Adult 00 0.499 0.436 0.472 0.479 0.949 | 0.521 0.464 00 0.460
Australian 00 0.444 0.442 0.487 0.471 00 0.637 0.656 0.531 0.503
Biology 00 0.018 0.017 0.016 0.021 00 0.071 0.057 0.018 0.016
Breast 00 0.793 0.791 0.837 0.809 0.840 | 0.753 0.830 1.07 0.850
COIL 0.326 0.323 0.301 0.325 0.311 0.357 | 0.305 0.350 0.304 0.303
Diabetes 00 0.806 0.784 0.758 0.775 00 0.861 0.780 0.746 0.774
Echocardio 1.216 0.924 0.897 0.891 0.837 0.902 | 0.810 0.852 0.829 0.847
Hepatitis 0.733 | 0.655 0.665 0.695 0.660 1.416 | 0.733 0.953 2.45 1.21
Ionosphere 0o 0.210 0.287 0.418 0.416 00 0.353 0.304 0.303 0.297
KDD-98 0.289 0.289 0.283 0.285 0.285 00 0.285 0.351 0.283 0.283
Kr-vs-kp 00 0.026 0.069 0.173 0.128 0.416 | 0.406 0.418 0.145 0.103
Liver 00 0.832 0.888 0.885 0.891 0.940 | 0.917 0.950 0.882 0.892
Mushroom || 0.000 | 0.000 0.006 0.000 0.001 0.191 | 0.166 0.298 0.000 0.003
Physics 00 0.763 0.762 0.802 0.805 00 0.880 0.933 0.792 0.783
Sick 00 0.070 0.086 0.171 0.203 0.219 | 0.190 0.183 00 0.164

Table 1: Cross entropy results. The best results for each classifier (J48, SVM and Naive Bayes) are in bold.

Dataset J48 BagJ48 | ProbJ48 || SigSVM | ProbSVM NB | SigNB | ProbNB Log | ProbLog
Adult 0.347 0.331 0.310 0.324 0.326 0.335 | 0.332 0.320 0.321 0.320
Australian 0.328 0.303 0.298 0.320 0.313 0.382 | 0.358 0.363 0.321 0.322
Biology 0.061 0.048 0.048 0.047 0.052 0.075 | 0.094 0.057 0.050 0.049
Breast 0.439 0.426 0.426 0.439 0.436 0.433 | 0.415 0.432 0.457 0.448
COIL 0.237 0.236 0.232 0.236 0.234 0.254 | 0.233 0.254 0.233 0.233
Diabetes 0.474 0.429 0.428 0.412 0.424 0.460 | 0.450 0.429 0.410 0.416
Echocardio 0.539 0.470 0.466 0.464 0.447 0.445 | 0.435 0.449 0.448 0.454
Hepatitis 0.390 0.383 0.368 0.368 0.358 0.432 | 0.400 0.404 0.440 0.449
Ionosphere 0.303 0.201 0.215 0.295 0.284 0.259 | 0.251 0.238 0.304 0.297
KDD-98 0.219 0.219 0.218 0.219 0.218 0.233 | 0.219 0.247 0.218 0.218
Kr-vs-kp 0.093 0.065 0.091 0.179 0.160 0.300 | 0.295 0.300 0.158 0.142
Liver 0.560 0.439 0.461 0.459 0.461 0.473 | 0.461 0.479 0.457 0.456
Mushroom || 0.000 0.001 0.012 0.000 0.003 0.182 | 0.170 0.201 0.000 0.008
Physics 0.529 0.425 0.424 0.435 0.434 0.490 | 0.490 0.477 0.432 0.430
Sick 0.125 0.116 0.119 0.175 0.205 0.199 | 0.187 0.190 0.175 0.172

Table 2: Squared error results. The best results for each classifier (J48, SVM and Naive Bayes) are in bold.

Dataset J48 BagJ48 | ProbJ48 || SigSVM | ProbSVM NB SigNB | ProbNB Log | ProbLog
Adult 0.852 0.891 0.912 0.901 0.901 0.906 | 0.906 0.905 0.902 0.904
Australian 0.900 0.937 0.944 0.912 0.924 0.920 | 0.920 0.917 0.918 0.926
Biology 0.885 0.976 0.987 0.986 0.982 0.957 | 0.922 0.956 0.981 0.987
Breast 0.606 0.602 0.633 0.680 0.659 0.723 0.723 0.724 0.642 0.611
COIL 0.500 0.641 0.720 0.542 0.682 0.709 0.709 0.717 0.706 0.708
Diabetes 0.715 0.796 0.798 0.817 0.824 0.779 0.779 0.805 0.820 0.819
Echocardio || 0.543 0.644 0.645 0.704 0.743 0.759 | 0.759 0.753 0.770 0.755
Hepatitis 0.654 0.670 0.662 0.749 0.748 0.743 0.743 0.757 0.629 0.667
Ionosphere 0.895 0.981 0.966 0.926 0.928 0.960 | 0.960 0.957 0.905 0.952
KDD-98 0.500 0.500 0.616 0.598 0.602 0.606 | 0.606 0.604 0.616 0.617
Kr-vs-kp 0.998 1.000 0.999 0.992 0.995 0.953 | 0.953 0.953 0.995 0.998
Liver 0.607 0.754 0.724 0.711 0.714 0.713 | 0.713 0.706 0.710 0.711
Mushroom || 1.000 | 1.000 1.000 1.000 1.000 0.998 | 0.998 0.990 1.000 1.000
Physics 0.674 0.803 0.803 0.785 0.789 0.738 | 0.738 0.729 0.788 0.791
Sick 0.965 0.985 0.989 0.946 0.940 0.949 0.949 0.952 0.935 0.952

Table 3: Area under the ROC results. The best results for each classifier (J48, SVM and Naive Bayes) are in
bold.
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Figure 1: Cross entropy vs. the number of Probing
iterations for 5 representative datasets (using J48).

Theorem 2 shows that the probing reduction is well
founded: good performance on the created classifica-
tion problems implies good performance with respect
to Probing probability estimates. Experimental re-
sults show that Probing achieves strong performance
relative to a variety of other (typically more special-
ized) techniques using a variety of classifier learners.
This combination of positive results is unmatched by
any alternative method.

In future work, we would like to validate the method
on multiclass problems as outlined in section 3. Also,
further studying the behavior of different discretiza-
tion schemes for choosing the weights could lead to
enhancements of the Probing estimates for different
performance criteria.
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