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Abstract

Spectral clustering is a technique for finding
groups in data consisting of similarities S;; be-
tween pairs of points. We approach the problem
of learning the similarity as a function of other
observed features, in order to optimize spectral
clustering results on future data. This paper for-
mulates a new objective for learning in spectral
clustering, that balances a clustering accuracy
term, the gap, and a stability term, the eigengap
with the later in the role of a regularizer. We
derive an algorithm to optimize this objective,
and semiautomatic methods to chose the optimal
regularization. Preliminary experiments confirm
the validity of the approach.

1 Introduction

While there has been much progress in obtaining better
spectral clusterings with similarities given or constructed
by hand, the problem of automatically estimating the sim-
ilarities from data has received less attention. This limits
the application of spectral clustering to the ability of the
domain experts to guess the correct features and their
optimal combination for each problem. It makes the re-
sults of the clustering algorithm sensitive to the particu-
lar function chosen. Moreover, it goes against the grain of
many successful approaches in machine learning, which is
to consider a large number of possibly irrelevant features,
within a regularized setting that lets the data select the
few relevant ones.

In contrast to previous work [Meild and Shi, 2001a,
Bach and Jordan, 2004], where the focus was on defining
a quality criterion to be optimized w.r.t the parameters
on training data, here we take an approach closer to the
principles above. We define an objective that balances a
term for clustering accuracy on training data with a sta-
bility term which acts as a regularizer. While this setting
is common to many problems, the specific form of the two
terms is particular to spectral clustering.
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We start by introducing notation and some basic facts in
section 2, we define the learning problem in section 3 and
introduce the new objective in 4. Sections 5, 6 present
respectively a gradient algorithm for optimizing the cri-
terion and a method for selecting the amount of regu-
larization. Experimental results are in section 7 and 8
concludes the paper.

2 Spectral clustering — notation and
background

In spectral clustering, the data is a set of similarities S;;,
satisfying S;; = Sj; > 0, between pairs of points 4,j in a
set V, [V] = n. The matrix S = [S;;]; jev is called the
similarity matriz. We denote by

D; = Vol {i} = Zsij (1)

JEV

the volume of node ¢ € V and by D a diagonal matrix
formed with D;,i € V. The volume of a set A C V is
Vol A= 3,c4D;. Wlo.g we assume that no node has
volume 0.

The random walks view Many properties of spectral
clustering are elegantly expressed in terms of the stochas-
tic transition matriz P obtained by normalizing the rows
of S to sum to 1.

P = D7'S or P; = Sij/D; (2)

This matrix can be viewed as defining a Markov random
walk over V, P;; being the transition probability Pr[i —
jli]. The eigenvalues of P are 1 = Ay > A2 > ... > A, >
—1 and the corresponding eigenvectors are v!,...v"™. Note
that because S = DP is symmetric, the eigenvalues of P
are real and the eigenvectors linearly independent. Define
[mi]icv by
™ = Di/VOl 14

It is easy to verify that PTn = « and thus that 7 is a
stationary distribution of the Markov chain. For a set

A CV, we denote by m4 = Vol A/VolV the probability
of A under the stationary distribution.



The MNCut criterion A clustering C = {C4,..., Ck}
is defined as a partition of the set V into the dis-
joint nonempty sets Ci,..., Ckx. The multiway nor-
malized cut (MNCut) clustering criterion [Meild, 2002,
Yu and Shi, 2003]

C’ut Ck,Ck/
MNCut(C Z P e Vol G (3)
k=1 k'#£k
where
Cut(A,B) = Y > S (4)
i€EA jJEB

The definition of MNC'ut is best motivated by the Markov
random walk view. Define P4p = Pr[A — B|A] as the
probability of the random walk going from set A C V to
set B C V in one step if the current state is in A and the
random walk is in its stationary distribution 7.

P = YicajesTilii  YicajenSii  Cut(A,B)
AB = Ta T VoA T~ VoA
(5)

It follows that the multiway normalized cut represents the
sum of the “out-of-cluster” transition probabilities at the
cluster level.

MNCut(C) = Z Z FPe.c, = K- ZPCkC'c

k=1 k#k’

If MNCwut(C) is small for a certain partition C, then the
probabilities of evading C, once the walk is in it, is small.

n [Meild, 2002] it is shown that the MNCwt(C) for any
clustering C is lower bounded by a function of the number
of clusters K = |C| and of the eigenvalues of P:

K

MNCut(C) > K =Y M(P) (7)
k=1

We call the non-negative difference between the MNCut

and its lower bound the gap:
K

= MNCut(C) = K + > A(P) (8)
k=1

One can show [Meild, 2002] that the gap is 0 iff P has

piecewise constant eigenvectors (PCE) v, ... vK w.rt C,

that is v = v¥ for all k < K whenever i, j are in the same

cluster.

gapp(C)

3 The learning problem

We assume that we have a data set of size n, for which the
correct clustering C* is given. For each pair of data points
i,7 in the data set we also measure a set of features. The
F-dimensional vector of features is denoted by

zijr|" 9)

The features are symmetric, that is z;; = zj; for all 4, 5.
We also assume for now that the features are non-negative

zij = [Tij1 Tij2 -

x5, > 0, f =1,...F and that an increase in z;j ; repre-
sents a decrease in the similarity between i and j. One can
think of the data points as vectors in some F-dimensional
space, with the features representing distances between
points along the F' coordinate axes. Our formulation how-
ever is significantly more general, in that it accomodates
dissimilarity features that do not come from a Euclidian
space representation of the data.

The similarity is an (almost everywhere) differentiable
function S(z;6) that maps a feature vector z € R into a
non-negative scalar similarity (e.g S(z;0) = e_aTw) with
0 € RF a vector of parameters. Let

Sij = S(:L‘,'j;a) for i,j:l,...n (10)
x = [gilij=1,.n € BT (11)
50) = Sx0) = [Silig=1,.n. € R (12)

Here, the letter S denotes both the similarity function
S(z;0), and the similarity matriz S(0) for fixed data set
x and parameter vector . The matrices obtained from
S(6) by (1,2) are respectively denoted D(6), P(0).

We want to learn the optimal parameters 6 of the simi-
larity function from a training set including one or more
data sets together with their correct clusterings. For sim-
plicity, we assume that we have one data set described
by the features x together with its correct clustering C*
having K clusters. The generalization to more than one
data set is immediate.

This problem was proposed in [Meild and Shi, 2001a];
there, the authors introduce a target S* having S7; = 1
if 4,5 are in the same cluster and S}; = 0 otherwise. The
parameters are then optimized by making S(#) match S*
in a KL-divergence sense that reflects the random walk
interpretation of the similarity matrix. This approach
worked well on image segmentation data, but is not ap-
propriate for general purpose learning. For any clustering
there can be an infinity of S matrices that are perfect for
that clustering. Imposing a target S* of any form will
overconstrain the problem and is equivalent to introduc-
ing a bias, which may or may not fit the problem at hand.

In [Bach and Jordan, 2004] an angle between subspaces is
used as a criterion for learning the parameters of spectral
clustering, thus dispensing with the target S*. This angle
is minimized when P() has PCE for the given clustering.
Optimizing this criterion is difficult in practice due to the
need to differentiate a function of the eigenvectors of a
matrix w.r.t the matrix elements.

Here, we address learning by explicitly enforcing that the
learned parameters induce a good clustering on the train-
ing data (x, C*) while “extracting as little information
from the trainig data as possible” as will be shown in the
next section.



4 The objective

Quality of the target clustering In the context of spec-
tral clustering, we can satisfy the first of the above re-
quirements by enforcing the quality of the true clustering
C* w.r.t S(6). The quality of a clustering can be mea-
sured by either its MNCut or its gap. For a given matrix
S, a clustering that minimizes the first also minimizes the
second, so the criteria are equivalent. However, if one
learns S, then the criteria are not equivalent: obtaining
a small MNCut implies that the off-diagonal blocks of S
are nearly 0, while a small gap does not carry such an
implication. Hence, the gap puts fewer constraints on 6
while still being an indicator of a good clustering, and we
choose it as a criterion of clustering quality.

The eigengap and the stability of the optimal clus-
tering To enforce the second requirement, we will max-
imize the eigengap Ax = Ag(P(6)) — Ax+1(P(0)). To
motivate this choice, one can recall the fact that a large
eigengap in P makes the subspace spanned by v!...vE
stable to perturbations. The following result, proved in
the appendix, gives a direct relationship between spectral
clustering and the eigengap.

For two clusterings with |C| = |C'| = K we define the
distance of C and C' by

) 1 (VolCy, N CL,)?
=1-— ke (g
dC,C) K Z Z VolC,VolC, (13)
Crecclec

This distance is symmetric, ranges in [0,1], but is
not a metric. Note that K — 1 — Kd(C,(C') is Pear-
son’s x? function, [Lancaster, 1969] known in statis-
tics as a measure of departure from independence.
The distance d is equivalent with a criterion pro-
posed by [Hubert and Arabie, 1985], with the modifi-
cation that each data point is weighted by its vol-
ume D;. The unweighted d distance was also used in
[Bach and Jordan, 2004].

Theorem 1 Let C,C' be two K-way clusterings with
gap(C), gap(C') <e < Ak. Then, d(C,C") < A3—f{ = 4.

Corollary 2 Let C be a K-way clustering with gap(C)
e < Ag and C* = argm}{n MNCwut(C"). Then d(C,C*)

Ic’|
d.

<
<

In words, the above theorem and its corollary show that, if
we find a clustering with a small enough gap relative to the
eigengap, then that clustering is also “stable”, in the sense
that any other clustering with small gap will necessarily
be close to it. If the eigengap is sufficiently large w.r.t to
the best attainable gap, then there is essential a unique
way of obtaining a good partition in that P. Any two
partitions with a small gap have to be close to each other.

The learning criterion Now we define learning in spec-

tral clustering as solving the following optimization prob-
lem

(P)  max A% (P(9)) (14)
s.t. gapp(C*) < € (15)

where gapy is a short form for gapp4). By simultaneously
achieving a small gap for C* and a large eigengap for P(6),
we enforce that C* is both a “good” and a “stable” clus-
tering (all other clusterings with small gap are close to
C*); this has been known to predict good generalization
performance in other learning settings.

Our formulation is reminiscent of the SVM formulation;
we maximize a “stability” penalty, while ensuring that
the training data are well clustered. The parameter €
controls the trade-off between the two goals; £ being a
gap, its value is bounded in [0, K]. Thus, as a rule of
thumb for the choice of ¢, a value in [10-2+~1, 1] should
represent a good enough quality for C*. In section 6 we
give a method for semi-automatically selecting its value.

One can also consider other formulations that balance
the gap and eigengap. For example, according to the-
orem 1, a natural optimality criterion would be J' =
gape(C)/ Ak (P(6)). We chose to optimize (P) over J'
because the latter contains a division by the eigengap.
Since the eigengap is typically a small number computed
as the difference of two consecutive eigenvalues, such an
operation is unstable numerically.

5 Optimizing the parameters

Here we present the solution to problem (P). Unlike the
SVM formulation, in our optimization problem neither
objective nor constraints are convex. Therefore, we op-
timize the parameters by following the gradient, starting
from small, positive, random values for the parameters 6.

The constrained optimization problem (14-15) is equiva-
lent with minimizing

Jo = agapy(C*) — A%(P(6)) (16)

for an a that depends on e. If € is known, Lagrange
multiplier methods typically find a and 8 simultaneously
[Bertsekas, 1999]. Here however we choose to take a dif-
ferent approach, that will be described in the next section.
For now, we will consider optimizing for # with a fixed a.

To evaluate the gradient of J, we write the criterion as
the sum of the MNCut and a function of the eigenvalues
of P. We further recall that [Meild and Shi, 2001b] the
eigenvalues of P(#) are equal to the eigenvalues of the
symmetric matrix L(#) = D(6)~'/25(9)D(6)~'/2. There-
fore we drop the 8 in S, L, and P to simplifiy notation



Ju(8) =

K

k=1
K
Ei,jek Sij
=1 Ziek 2?21 Sij

J1(8)

—Q

~

K

+a Z Ak(L) — [AK(L) - )‘K+1 (L)]2
k=1

~ -
~~

J2(8)

The derivative of J; w.r.t to 6 is straightforward, as-
suming that the partial derivatives % can be computed
tractably. In the following we show how to obtain the
gradient of the second term, which involves the eigenval-
ues of L(6). Evaluating Bg;j also presents no problem, so
we focus on the derivatives of eigenvalues and of sums of

eigenvalues w.r.t to the elements of L.

It is known that for a symmetric matrix L, the derivative
of a simple eigenvalue A w.r.t the matrix elements has the
expression

oA 1
5L = W (17)

where v is the eigenvector corresponding to A. If A is a
multiple eigenvalue, then A(L) is not differentiable at L.
In practice, when two of the eigenvalues of L(6) are too
close, the evaluation of the gradient becomes numerically
instable. When optimizing (16), reducing the MNCut
term has the tendency to push the first K eigenvalues to-
ward 1, thus sending the optimization trajectory into an
instability zone. However, it is worth noting the stabiliz-
ing effect played by the eigengap term in (16). Enforcing
one large eigengap, Ak, for this problem, has the effect
of enlarging the distances between all of A1,...Ag41. In
fact, in our experiments, the simple gradient given by for-
mula (17) is stable for all but the extremely large values
of a.

5.1 Computation

Each gradient step comprises an evaluation of % for
the descent direction and several evaluations of J, for the
line search. With the features x given, computing S takes
O(n?F) operations, computing the MNCut and 2MCut
takes O(n?) and evaluating the partial derivatives %, %
requires another O(n2F). To complete the evaluation of
Jo and of its gradient, we also need the first K + 1 eigen-
values and eigenvectors of L(f). We compute them with
the Matlab eigs function that calls an iterative proce-
dure whose time per iteration is nK’', where K' is the
number of eigenvalues required. In our experiments, we
use K' = max(2K, K + 10). Thus the running time per

gradient step is O(n’F +nK').

a |[MNCutp(C*) — K + ) M(P)| — [Ax(P) = Ax+1(P)]?

We also use line search along the direction of descent to
find the optimal step size at each iteration. The procedure
we use is the Armijo rule [Bertsekas, 1999]. This takes a
step of size 7 the first time when J,(8) — J, (6 — T%) >
B||%||> with B = 1072, otherwise 7 is reduced by a fac-
tor of 2. We allow up to 30 reductions, but the algorithm
can be easily tuned so that in practice most steps are
taken after just 1-2 function evaluations. The implemen-
tation of the adaptive step size is however not superfluous,
as typically at the beginning and at the end of the learn-
ing, smaller step sizes are chosen. With the adaptive step
size, the gradient descent usually takes less than 100 steps
to attain a good set of 8 values; attaining convergence once
near the optimum is slower, typical of gradient algorithms.
A typical method of speeding up the eigenvalue computa-
tion in spectral clustering is to use sparse similarity ma-
trices instead of full ones or the Nystrom approximataion
for eigenvectors. [Fowlkes et al., 2004] These tricks can
be also applied to learning spectral clustering, leading to
additional time savings.

6 Selecting the regularization parameter

Choosing the amount of regularization is critical for the
success of learning. By translating « into an € via the
optimization problem (P), one gets a handle on the or-
der of magnitude of ¢ which can be used when there is
good prior knowledge about the problem or when a cheap
solution is needed. Now we show a simple method for
semi-automatically selecting a.

Algorithm SELECTALPHA

1. Choose a set A of a values spanning a reasonable
range, e.g [1072, 10

2. Forae A
(a) Find 4, = arg;nin Ja(6)

(b) Compute do = Ak (P(0a)), go = gap;_(C*)

3. (Manual) Choose a* so that g,+ is small, but -+
is still reasonably large. In a plot of g, vs dq, the
desired a* will be near the lower right corner of the
plot.

Figure 1 shows an example of such a plot. Note that more
than one a value may be near the knee of the curve. This
algorithm could be refined, for example by a binary search
on «a, but the hope is that the problem is not so sensitive
to the value of the regularizing parameter.

7 Experiments

In this section we provide the details and results of exper-
iments run with the learning algorithm presented here.
The similarity is defined as S(z,0) = e " *, with 0 as-
sumed positive. The initial weights were chosen to be
inversely proportional to the variance of the z;;;. After
learning for each prespecified a two optimal « values and
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Figure 1: Selecting a on the “letters A,C,I” data set described in section 7: (a) The gap vs. eigengap plot on the training data;
each point is labeled with its a value. (b) Clustering quality for the learned #’s on an independent test set, measured by the
variation of information (VI) and the classification error (CE), plotted versus the regularization parameter o. (c¢) The learned
similarity matrix S for this dataset. Note that the off-diagonal blocks are non-zero.

corresponding parameters were chosen. The first optimal
a was chosen based on the smallest misclassification er-
ror on the training set, with ties going to the smallest a,
its corresponding parameters will be denoted 8,,cr. The
second a was chosen using the select Select Alpha algo-
rithm described in Section 6, and its parameters will be
denoted 8,,54. Selecting a single « is less clear in this sec-
ond method; in Figure la it can be seen that both 2 and
4 are possible candidates for an optimal a. In these situa-
tions, it appears that reasonable candidates for a lead to
similar clustering results. In order to test each vector of
parameters the first K eigenvectors of the corresponding
P(6) matrix were clustered using k-means, with multiple
random and orthonormal initializations; for more infor-
mation on initializations see [Verma and Meild, 2003].

7.1 Bull’s-Eye

The first set of experiments was run on simulated data, a
bull’s-eye in two dimensions. The data consist of an in-
ner ring containing approximately 40% of the data points
with the remaining data points forming an outer ring.
While this data is artificial, large within cluster distances,
a small number of neighbors for each point, and a high
possibility of over-fitting make learning non-trivial. Also,
the meaningful features each taken separately do not cor-
relate well with the clustering, making the high weight-
ing of both meaningful features important in the learning
process. We added Ndim noisy dimensions to the bull’s-
eye, which were symmetric random matrices designed to
have the same mean as the meaningful features. The
weights were learned for a vector of a’s, by minimizing
(16). The distance metric used for creating the two mean-
ingful dimensions was x;;; = |yu — yji|. Where y;1 is the
x-coordinate and y;» is the y-coordinate associated with
the it" point. We tested the weights on ten independent
samples of 300 data points.

Table 1 presents the average of the classification error,

Table 1: Results for the bull’s-eye experiments.

nt is the size of the training data set the parameters were
learned on and Ndim is the number of noisy dimensions added
to the data. The a presented here are those chosen based on
the lowest training classification error. The classification error
(CE), gapg, Ar and NCut are averaged over 10 independent
test sets.

ny | Ndim aceg CE  gapy Ag Ncut |
150 1 1.2 0 4.4e-5 1.1e-3 4.9e-3
200 2 1.2 0 93ed5 3.0e4 7.0e-3
400 4 1.2 0 7.9e-5 5.4e-4 6.7e-3
700 16 2 0 l.1e-4 4.0e-4 7.2e-3

gap, eigengap and normalized cut over the ten samples
using 0,,cr as the weights applied to the features. In
this situation the 84,54 are identical to the 8, ,cg. In all
cases the learned parameters were positive and approx-
imately equal for the meaningful features and 0 on the
noisy dimensions, which lead to great clusterings on the
test data samples.

7.2 Letters

The second set of experiments is performed on the Let-
ter Recognition data set from the UCI KDD archive
[Slate, 1991]. Each letter has sixteen features, y;1.16, in-
teger valued from 0 to 16, associated with it. Some exam-
ples of the attributes are the height and width of the box
and the mean x and y positions of the “on”-pixels. The
distance used for creating the x array is defined here:

0
Lij,f = lyi, s =Y. sl

Yi,f+Yi.r

ifyif =yis=0
otherwise

This distance was chosen because it scales down the fea-
tures into [0,1] and because it was believed that a small
difference between two large attribute values was less in-
formative than a small difference between two small at-
tribute values. This data set complements the bull’s eye



data set because the Multi-way Normalized cut is greater
than 0, the clusters are dense and there are redundant
features.

The experiments described here represent all of the ex-
periments we have done on this data. Due to time and
memory limitations small subsets of the letters were ex-
plored. Between the training and test sets each letter
appears approximately 750 times. The training set of the
‘SM’ data consisted of 50 occurrences of each letter, the
‘WA’ and ‘EI’ training data contained 100 of each letter,
and the training set for the ‘ACI’ and ‘ACIM’ data had
200 of each letter. We also chose to re-sample sets of 150
letters, 25 times from each of the test data set, to test
the parameters on smaller data subsets, because it was
noted on the artificial data that larger data sets provided
for better clusterings even with the learned parameters
applied.

Table 2 gives the results of the learning experiments for
both 6,,cr and 6,,54 on the training and test data sets.
The optimal a’s chosen by the two methods differ, which
is due in part to the fact that it is rare, in either method,
to have a unique optimal o and ties were decided differ-
ently between the methods. A priori it might be thought
that the a chosen from the CE on the training set might
over fit the training data, but the test CE’s do not show
much evidence of over-fitting in these experiments. This
maybe because the learning algorithm does not minimize
the clustering error directly. To make sure that learned
parameters was in fact improving the clustering, we clus-
tered the re-sampled test data using parameter values all
equal to 0.1, and these are presented in the last column of
Table 2. Note also the consistent decrease in CE with the
increase of the test size. We attribute this to the smooth-
ing effect of a large sample size on the eigenvectors.

It is interesting to ask whether there is a common set of
important features across letters. Figure 2 plots the pa-
rameters, 8, cr, assigned to each feature for the five dif-
ferent subsets tested. The 6, 54 are very similar and are
not shown. While there is variation in the magnitude of
the parameters, there seems to be some agreement in the
weights selected as important. It appears that features
twelve and fourteen are relatively important for all of the
data sets, while one, two, five and nine do not appear to
be very important for clustering these subsets. The pa-
rameters learned from the letters ‘S’ and ‘M’ appear to
be the most different from the others. To further test
this idea of a common set of features, the 6, 54 learned
from the ‘SM’ subset, were applied to the other subsets
and the clustering errors for the multiple disjoint test sets
are reported in Table 2. They do not differ substantially
suggesting that this data set has redundant features.

7.3 Stability Theorem

All of the experiments previously discussed chose clus-
terings by minimizing the gap, while maintaining a large

Figure 2: Comparison of learned parameters on all five data
sets for the letters

eigengap. This set of experiments are designed to show
that the clusterings achieved by optimizing this criterion
are close to the optimal clustering. We performed a set
of simple experiments, constructing a matrix S, result-
ing in a P with PCE’s, to which we added random noise.
Table 3 gives the value of the bound in Theorem 1 as a
function of the noise, averaged over 10 noise realizations,
for the clustering obtained by the Meila-Shi spectral al-
gorithm [Meild and Shi, 2001b]; K = 5 for this data set.
As one can see, the bound is informative up to significant
noise levels (SNR of about 1). Since the node volumes
are known, in the best cases the bound can represent a
proof that the optimal clustering for this data set has been
actually found.

8 Discussion and conclusions

We have introduced a new criterion for learning the sim-
ilarity in spectral clustering. The criterion optimizes the
quality of the target clustering, while constraining the pa-
rameters 6 as little as possible in the process. This is
achieved by choosing the gap as the clustering quality,
and by adding the squared eigengap as a regularization
term. One of the difficulties of learning in spectral clus-
tering is the numerical optimization of the chosen criteria,
as they often depend on 6 through functions of the eigen-
values and vectors of P or another matrix. The gradients
of such functions are expensive to compute and often un-
stable. Our choice of objective function also performs well
in this respect, in that it can be optimized by a rather un-
sophisticated gradient descent algorithm. This is partly
due to the eigengap term which has the effect of enhancing
the numerical stability of the problem.

The amount of regularization is selected (semi-) automat-
ically on the training set alone, with no further adjust-
ments on the test set. Of course, some obvious variations
are possible, like using multiple training sets, examining
the 0., 9. graph on the test data, or other permissible
tunings on the test data or on an independent validation
set. We have avoided these here, as our focus was to val-
idate the power of the regularization using training data



Table 2: Results of Letter experiments

The letter subsets are provided in the first column. The four columns titled 8,,cr present the a value chosen by the lowest
training CE, the training and test classification errors (CE); and the “Resample” column gives the average CE and standard
deviation in parenthesis over the 25 re-sampled data sets of 150 letters from the test data. The columns titled 6,,s4 present
these same results when the parameters corresponding to the a chosen by the Select Alpha method were applied. The column
labeled “84,s4 from SM” contains the average classification error over the re-sampled test sets when the parameters learned from
the SM subset are applied to the other data sets. Finally, the last column presents the average CE when parameters all equal to
0.1 are applied to the re-sampled test data.

Ouo.cE 0u,54 0q,54 from SM || 0116 = 0.1
Train Test Resample Train Test Resample Resample Resample
CE CE CE CE CE CE CE CE

« % %  avg % (sd) | « % % avg % (sd) avg % (sd) avg % (sd)
SM | 4 00 28 68(48) | 2 11 28 57 (2.5) NA 21.0 (12.9)
WA [10 20 32 46(13) |08 40 53 58(L8) 4.8 (1.9) 8.8 (2.6)
ACI |4 83 66 81(21) |8 85 7.8 120(5.3) 9.7 (2.9) 21.3 (7.3)
AICM | 8 13.4 12 17.3 (6.9) 1 16.3 14 15.2 (3.0) 32.3 (9.6) 32.2 (9.5)
ElI |2 85 179 154(9.2) | 4 38 44 433 (7.1) 23.0 (2.5) 19.4 (4.0)

Table 3: Results of experiments showing that optimizing the criterion presented here, achieves clustering close to the optimal.
The magnitude of the noise added to the S matrix is given in the column headings. The average bound (std. dev), defined in
Theorem 1, over 10 replications at each noise level is presented in each column. We can see that up to noise magnitude of 3.2

the bound is informative.

Noise level | 0.01 0.1

04

1.6 3.2 12.8 25.6

Bound (stdev) | 1.7e-6 (1e-7) 3e-4 (3e-5)

alone. The experimental results are very promising, as
the algorithm clusters both sparse and blocky data, and
eliminates the noisy features flawlessly.

The stability theorem 1 and its corollary can be used out-
side of spectral learning. For instance, the bound can tell
one how far a given clustering is w.r.t the unknown op-
timal clustering on a data set, and even, in the luckiest
cases, prove that the best clustering was found. The theo-
rem makes no explicitly assumptions about the similarity
matrix S. However, one should be aware that not every S
will have a clustering good enough to satisfy the bound.

We conclude by remarking that from the perspective of
learning, this work is just a beginning. A frame perhaps
solid enough to allow one to think of the yet unanswered
questions at the core of statistical learning, like sample
complexity, prior knowledge, generalization bounds and
so on. We hope that our future work will contribute to
these areas.
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Proof of Theorem 1

For any clustering C and fixed S matrix, with L defined as
in section 5 we denote by e* the indicator vector of cluster
Cr €C,y* =DYV2ek Y =[y' ... %], ur, = 1—-M(L), U
= the orthonormal matrix formed with the eigenvectors
of L as columns. Thus, I — L = Udiag(u1, ... pu,)UT. Ttis
easy to show that MNCut(C) = Y1, y*T(I — L)y* and
9ap(C) = MNCut(C) —Eszl k. For two clusterings C, C’
we express their respective Y, Y' in the basis defined by U
asY =UA, Y =UA" with A, A’ being n x K matrices
of coefficients. Let

A:[é] A’z[éj] (18)

with A, A’ K x K matrices.

Lemma 3 If gap(C) < ¢, then ||E||% < &, where § =
e/Ak and ||E||% represents the Frobenius norm.

Proof Denote by A.j the k-th column of A.
ZATUT (I — L)UA. (19)

ZykT (I— L)y
k=1
= ZZAikuj (20)

k=1 j=1
K K K n
S5 9) SENIREINN Sib ¥ ES
k=1 j=1 k=1j=K+1
EI%

Now, using the hypothesis, we have

ZZAJWJ +prnl| Bl < Zuk +e

k=1 j=1
K K
picnll Bl <0 m(1=) " A3) +e (22)
k=1 j=1
K K
< pk K—ZZA% +e (23)
k=1 j=1
= uxl|El[F +e (24)

Lemma 4 Assume that the conditions of theorem 1 hold
and let Y, A, A, E be as defined before. Let the SVD of A
be given by

ATA = Vdiag{o?,03,... 0% }V1 (25)

with Vi a unitary matriz. Then oi > 1—=4 fork =
1,...K.

P

Proof The columns of A are orthonormal. Therefore

ATA =1 = ATA+E"E
or o
ATA = 1-E'E
Let ex, £ = 1,...K be the singular values of E. Then,

there is a unitary matrix 172 such that
V,LAT AV, = I — diag{e?, ... €%} (26)

Since [|E||% < 6 we have that Zk L€ < 0 and therefore
ep < J. From (26) we also have that of = 1- e% and
Vy = V; which implies ak >1—-4dforallk=1,...K. 1

Note also that if ||E||%, ||E'||% < 4, then by the Cauchy-
Schwartz inequality ||[ETE'|| < 4.

Lemma 5 Assume that the conditions of theorem 1 hold
andletY, A, A, E,Y' A", A", E' and 6 be as defined be-
fore. Then

IYTY'||2 > K — (VK +1)% (27)
Proof Let
YTY'|p = [|ATA||p (28)
[|ATA' + ETE'||r (29)
> |ATAr BB | (30)

Let us look at the first term of the difference above.

zz(zAﬂA]k) SR ()
k=1

i=1 k=1

A" A7

By virtue of the singular value decomposition in (26) A

can be written as
/1 = %diag{al,og,... JK}‘;:; (32)

with V3, V4 complex unitary matrices. Therefore

[ATAL|I; = |IV) diag{o1,0,... ox}Vy A|[5(33)
= ||diag{o1,00,... ox}VELAL|2  (34)
> (1= )|V A3 (35)
= (1-9)| A5 (36)

Then, using equation (31) and lemma 3 we obtain

K

AT > (1-8) ) I1ALIE (37)
k=1

> (1-6)(K—9) (38)

Using now equation (30) above we obtain

YTy'E > (IIA7A|r - IIJI’JTE’HF)2 (39)
> (VA —0)(K —8)—0) (40)
> K- (VK +1)% (41)

Asd=1- %||YTY"||% and (VK + 1)2/K < 3 the proof
of the theorem is finished.



