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Abstract

We consider how to make probability fore-
casts of binary labels. Our main mathemati-
cal result is that for any continuous gambling
strategy used for detecting disagreement be-
tween the forecasts and the actual labels,
there exists a forecasting strategy whose fore-
casts are ideal as far as this gambling strat-
egy is concerned. A forecasting strategy ob-
tained in this way from a gambling strategy
demonstrating a strong law of large numbers
is simplified and studied empirically.

1 INTRODUCTION

Probability forecasting can be thought of as a game
between two players, Forecaster and Reality:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

On each round, Forecaster predicts Reality’s move yn

chosen from the label space, always taken to be {0, 1}
in this paper. His move, the probability forecast pn,
can be interpreted as the probability he attaches to
the event yn = 1. To help Forecaster, Reality presents
him with an object xn at the beginning of the round;
xn are chosen from an object space X.

Forecaster’s goal is to produce pn that agree with the
observed yn. Various results of probability theory,

∗Computer Learning Research Centre, Department of
Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, England.

†Department of Mathematical Informatics, Graduate
School of Information Science and Technology, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

‡Rutgers Business School—Newark and New Bruns-
wick, 180 University Avenue, Newark, NJ 07102, USA.

in particular limit theorems (such as the weak and
strong laws of large numbers, the law of the iterated
logarithm, and the central limit theorem) and large-
deviation inequalities (such as Hoeffding’s inequality),
describe different aspects of agreement between pn and
yn. For example, according to the strong law of large
numbers, we expect that

lim
n→∞

1
n

n∑

i=1

(yi − pi) = 0. (1)

Such results will be called laws of probability and the
existing body of laws of probability will be called clas-
sical probability theory.

In §2, following [12], we formalize Forecaster’s goal by
adding a third player, Skeptic, who is allowed to gam-
ble at the odds given by Forecaster’s probabilities. We
state a result from [14] and [12] suggesting that Skep-
tic’s gambling strategies can be used as tests of agree-
ment between pn and yn and that all tests of agree-
ment between pn and yn can be expressed as Skeptic’s
gambling strategies. Therefore, the forecasting proto-
col with Skeptic provides an alternative way of stating
laws of probability.

As demonstrated in [12], many standard proof tech-
niques developed in classical probability theory can be
translated into continuous strategies for Skeptic. In §3
we show that for any continuous strategy S for Skep-
tic there exists a strategy F for Forecaster such that S
does not detect any disagreement between the yn and
the pn produced by F . This result is a “meta-theorem”
that allows one to move from laws of probability to
forecasting algorithms: as soon as a law of probability
is expressed as a continuous strategy for Skeptic, we
have a forecasting algorithm that guarantees that this
law will hold; there are no assumptions about Reality,
who may play adversarially.

Our meta-theorem is of any interest only if one can find
sufficiently interesting laws of probability (expressed as
gambling strategies) that can serve as its input. In §4



we apply it to the important properties of unbiased-
ness in the large and small of the forecasts pn ((1) is an
asymptotic version of the former). The resulting fore-
casting strategy is automatically unbiased, no matter
what data x1, y1, x2, y2, . . . is observed.

In §5 we simplify the algorithm obtained in §4 and
demonstrate its performance on some artificially gen-
erated data sets.

2 THE GAMBLING FRAMEWORK
FOR TESTING PROBABILITY
FORECASTS

Skeptic is allowed to bet at the odds defined by Fore-
caster’s probabilities, and he refutes the probabilities if
he multiplies his capital manyfold. This is formalized
as a perfect-information game in which Skeptic plays
against a team composed of Forecaster and Reality:

Binary Forecasting Game I

Players: Reality, Forecaster, Skeptic

Protocol:

K0 := 1.
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

Restriction on Skeptic: Skeptic must choose the sn

so that his capital is always nonnegative (Kn ≥ 0 for
all n) no matter how the other players move.

This is a perfect-information protocol; the players
move in the order indicated, and each player sees the
other player’s moves as they are made. It specifies
both an initial value for Skeptic’s capital (K0 = 1)
and a lower bound on its subsequent values (Kn ≥ 0).

Our interpretation, which will be called the testing in-
terpretation, of Binary Forecasting Game I is that Kn

measures the degree to which Skeptic has shown Fore-
caster to do a bad job of predicting yi, i = 1, . . . , n.

2.1 VALIDITY AND UNIVERSALITY OF
THE TESTING INTERPRETATION

As explained in [12], the testing interpretation is valid
and universal in an important sense. Let us assume,
for simplicity, that objects are absent (formally, that
|X| = 1). In the case where Forecaster starts from
a probability measure P on {0, 1}∞ and obtains his
forecasts pn ∈ [0, 1] as conditional probabilities under

P that yn = 1 given y1, . . . , yn−1, we have a standard
way of testing P and, therefore, pn: choose an event
A ⊆ {0, 1}∞ (the critical region) with a small P (A)
and reject P if A happens. The testing interpretation
satisfies the following two properties:

Validity Suppose Skeptic’s strategy is measurable
and pn are obtained from P ; Kn then form a
nonnegative martingale w.r. to P . According to
Doob’s inequality [14, 3], for any positive con-
stant C, supnKn ≥ C with P -probability at most
1/C. (If Forecaster is doing a bad job according
to the testing interpretation, he is also doing a
bad job from the standard point of view.)

Universality According to Ville’s theorem ([12],
§8.5), for any positive constant ε and any
event A ⊆ {0, 1}∞ such that P (A) < ε, Skep-
tic has a measurable strategy that ensures
lim infn→∞Kn > 1/ε whenever A happens, pro-
vided pn are computed from P . (If Forecaster is
doing a bad job according to the standard point
of view, he is also doing a bad job according to
the testing interpretation.) In the case P (A) = 0,
Skeptic actually has a measurable strategy that
ensures limn→∞Kn = ∞ on A.

The universality of the gambling scenario of Binary
Forecasting Game I is its most important advantage
over von Mises’s gambling scenario based on subse-
quence selection; it was discovered by Ville [14].

2.2 CONTINUITY OF GAMBLING
STRATEGIES

In [12] we constructed Skeptic’s strategies that made
him rich when the statement of any of several key laws
of probability theory was violated. The constructions
were explicit and lead to continuous gambling strate-
gies. We conjecture that every natural result of clas-
sical probability theory leads to a continuous strategy
for Skeptic.

3 DEFEATING SKEPTIC

In this section we prove the main (albeit very simple)
mathematical result of this paper: for any continuous
strategy for Skeptic there exists a strategy for Fore-
caster that does not allow Skeptic’s capital to grow,
regardless of what Reality is doing. Actually, our re-
sult will be even stronger: we will have Skeptic an-
nounce his strategy for each round before Forecaster’s
move on that round rather than making him announce
his full strategy at the beginning of the game, and we
will drop the restriction on Skeptic. Therefore, we con-



sider the following perfect-information game that pits
Forecaster against the two other players:

Binary Forecasting Game II

Players: Reality, Forecaster, Skeptic

Protocol:

K0 := 1.
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

Theorem 1 Forecaster has a strategy in Binary Fore-
casting Game II that ensures K0 ≥ K1 ≥ K2 ≥ · · · .

Proof Forecaster can use the following strategy to en-
sure K0 ≥ K1 ≥ · · · :

• if the function Sn(p) takes the value 0, choose pn

so that Sn(pn) = 0;

• if Sn is always positive, take pn := 1;

• if Sn is always negative, take pn := 0.

4 EXAMPLES OF GAMBLING
STRATEGIES

In this section we discuss strategies for Forecaster
obtained by Theorem 1 from different strategies for
Skeptic; the former will be called defensive forecasting
strategies. There are many results of classical proba-
bility theory that we could use, but we will concen-
trate on the simple strategy described in [12], p. 69,
for proving the strong law of large numbers.

If Sn(p) = Sn does not depend on p, the strategy from
the proof of Theorem 1 makes Forecaster choose

pn :=





0 if Sn < 0
1 if Sn > 0
0 or 1 if Sn = 0.

The basic procedure described in [12] (p. 69) is as fol-
lows. Let ε ∈ (0, 0.5] be a small number (expressing
our tolerance to violations of the strong law of large
numbers). In Binary Forecasting Game I, Skeptic can
ensure that

sup
n
Kn < ∞ =⇒ lim sup

n→∞
1
n

n∑

i=1

(yi − pi) ≤ ε (2)

using the strategy sn = sε
n := εKn−1. Indeed, since

Kn =
n∏

i=1

(1 + ε(yi − pi)),

on the paths where Kn is bounded we have
n∏

i=1

(1 + ε(yi − pi)) ≤ C,

n∑

i=1

ln(1 + ε(yi − pi)) ≤ ln C,

ε

n∑

i=1

(yi − pi)− ε2
n∑

i=1

(yi − pi)2 ≤ ln C,

ε

n∑

i=1

(yi − pi) ≤ ln C + ε2n,

1
n

n∑

i=1

(yi − pi) ≤ ln C

εn
+ ε

(we have used the fact that ln(1 + t) ≥ t − t2 when
|t| ≤ 0.5). If Skeptic wants to ensure

sup
n
Kn < ∞ =⇒ −ε ≤ lim inf

n→∞
1
n

n∑

i=1

(yi − pi)

≤ lim sup
n→∞

1
n

n∑

i=1

(yi − pi) ≤ ε,

he can use the strategy sn := (sε
n + s−ε

n )/2, and if he
wants to ensure

sup
n
Kn < ∞ =⇒ lim

n→∞
1
n

n∑

i=1

(yi − pi) = 0, (3)

he can use a convex mixture of (sε
n + s−ε

n )/2 over a se-
quence of ε converging to zero. There are also standard
ways of strengthening (3) to

lim inf
n→∞

Kn < ∞ =⇒ lim
n→∞

1
n

n∑

i=1

(yi − pi) = 0;

for details, see [12].

In the rest of this section we will draw on the excellent
survey [2]. We will see how Forecaster defeats increas-
ingly sophisticated strategies for Skeptic.

4.1 UNBIASEDNESS IN THE LARGE

Following Murphy and Epstein [7], we say that Fore-
caster is unbiased in the large if (1) holds. Let us first
consider the one-sided relaxed version of this property

lim sup
n→∞

1
n

n∑

i=1

(yi − pi) ≤ ε. (4)



The strategy for Skeptic described above, Sn(p) :=
εKn, leads to Forecaster always choosing pn := 1; (4)
is then satisfied in a trivial way.

Forecaster’s strategy corresponding to the two-sided
version

− ε ≤ lim inf
n→∞

1
n

n∑

i=1

(yi − pi)

≤ lim sup
n→∞

1
n

n∑

i=1

(yi − pi) ≤ ε (5)

is not much more reasonable. Indeed, it can be repre-
sented as follows. The initial capital 1 is split evenly
between two accounts, and Skeptic gambles with the
two accounts separately. If at the outset of round n the
capital on the first account is K1

n−1 and the capital on
the second account is K2

n−1, Skeptic plays s1
n := εK1

n−1

with the first account and s2
n := −εK2

n−1 with the sec-
ond account; his total move is

Sn(p) := εK1
n−1 − εK2

n−1

= ε

(
n−1∏

i=1

(1 + ε(yi − pi))−
n−1∏

i=1

(1 + ε(pi − yi))

)
.

Therefore, Forecaster’s move is pn := 1 if

n−1∑

i=1

ln(1 + ε(yi − pi)) >

n−1∑

i=1

ln(1 + ε(pi − yi)),

pn := 0 if

n−1∑

i=1

ln(1 + ε(yi − pi)) <

n−1∑

i=1

ln(1 + ε(pi − yi)),

and pn can be chosen arbitrarily in the case of equal-
ity. The limiting form of this strategy as ε → 0 is:
Forecaster’s move is pn := 1 if

n−1∑

i=1

(yi − pi) > 0,

pn := 0 if
n−1∑

i=1

(yi − pi) < 0,

and pn can be chosen arbitrarily in the case of equality.

We can see that unbiasedness in the large does not
lead to interesting forecasts: Forecaster fulfils his task
too well. In the one-sided case (4), he always chooses
pn := 1 making

n∑

i=1

(yi − pi)

as small as possible. In the two-sided case (5) with
ε → 0, he manages to guarantee that

∣∣∣∣∣
n∑

i=1

(yi − pi)

∣∣∣∣∣ ≤ 1. (6)

His goals are achieved with categorical forecasts, pn ∈
{0, 1}.
In the rest of this section we consider the more inter-
esting case where Sn(p) depends on p.

4.2 UNBIASEDNESS IN THE SMALL

We now consider a subtler requirement that forecasts
should satisfy, which we introduce informally. We say
that the forecasts pn are unbiased in the small (or reli-
able, or valid, or well calibrated) if, for any p∗ ∈ [0, 1],

∑
i=1,...,n:pi≈p∗ yi∑
i=1,...,n:pi≈p∗ 1

≈ p∗ (7)

provided
∑

i=1,...,n:pi≈p∗ 1 is not too small.

Let us first consider just one value for p∗. Instead of
the “crisp” point p∗ we will consider a “fuzzy point” I :
[0, 1] → [0, 1] such that I(p∗) = 1 and I(p) = 0 for all p
outside a small neighborhood of p∗. A standard choice
would be something like I := I[p−,p+], where [p−, p+] is
a short interval containing p and I[p−,p+] is its indicator
function, but we will want I to be continuous (it can,
however, be arbitrarily close to I[p−,p+]).

The strategy for Skeptic ensuring (2) can be modified
as follows. Let ε ∈ (0, 0.5] be again a small num-
ber. Now we consider the strategy Sn(p) = Sε,I

n (p) :=
εI(p)Kn−1. Since

Kn =
n∏

i=1

(1 + εI(pi)(yi − pi)),

on the paths where Kn is bounded we have
n∏

i=1

(1 + εI(pi)(yi − pi)) ≤ C,

n∑

i=1

ln(1 + εI(pi)(yi − pi)) ≤ ln C,

ε

n∑

i=1

I(pi)(yi − pi)− ε2
n∑

i=1

I2(pi)(yi − pi)2 ≤ ln C,

ε

n∑

i=1

I(pi)(yi − pi)− ε2
n∑

i=1

I(pi) ≤ ln C

(the last step involves replacing I2(pi) with I(pi); the
loss of precision is not great if I is close to I[p−,p+]),

ε

n∑

i=1

I(pi)(yi − pi) ≤ ln C + ε2
n∑

i=1

I(pi),



∑n
i=1 I(pi)(yi − pi)∑n

i=1 I(pi)
≤ ln C

ε
∑n

i=1 I(pi)
+ ε.

The last inequality shows that the mean of yi for pi

close to p∗ is close to p∗ provided we have observed suf-
ficiently many such pi; its interpretation is especially
simple when I is close to I[p−,p+].

In general, we may consider a mixture of Sε,I
n (p) and

S−ε,I
n (p) for different values of ε and for different I cov-

ering all p∗ ∈ [0, 1]. If we make sure that the mixture
is continuous (which is always the case for continuous
I and finitely many ε and I), Theorem 1 provides us
with forecasts that are unbiased in the small.

4.3 USING THE OBJECTS

Unbiasedness, even in the small, is only a necessary but
far from sufficient condition for good forecasts: for ex-
ample, a forecaster who ignores the objects xn can be
perfectly calibrated, no matter how much useful infor-
mation xn contain. (Cf. the discussion of resolution in
[2]; we prefer not to use the term “resolution”, which
is too closely connected with the very special way of
probability forecasting based on sorting and labeling.)
It is easy to make the algorithm of the previous sub-
section take the objects into account: we can allow the
test functions I to depend not only on p but also on
the current object xn; Sn(p) then becomes a mixture
of

Sε,I
n (p) := εI(p, xn)

n−1∏

i=1

(1 + εI(pi, xi)(yi − pi))

and S−ε,I
n (p) (defined analogously) over ε and I.

4.4 RELATION TO A STANDARD
COUNTER-EXAMPLE

Suppose, for simplicity, that objects are absent (|X| =
1). The standard construction from Dawid [1] showing
that no forecasting strategy produces forecasts pn that
are unbiased in the small for all sequences is as follows.
Define an infinite sequence y1, y2, . . . recursively by

yn :=

{
1 if pn < 0.5
0 otherwise,

where pn is the forecast produced by the forecasting
strategy after seeing y1, . . . , yn−1. For the forecasts
pn < 0.5 we always have yn = 1 and for the forecasts
pn ≥ 0.5 we always have yn = 0; obviously, we do not
have unbiasedness in the small.

Let us see what Dawid’s construction gives when ap-
plied to the defensive forecasting strategy constructed
from the mixture of Sε,I

n (p) and S−ε,I
n (p), as described

above, over different ε and different I; we will assume
not only that the test functions I cover all [0, 1] but
also that each point p ∈ [0, 1] is covered by arbitrar-
ily narrow (concentrated in a small neighborhood of
p) test functions. It is clear that we will inevitably
have pn → 0.5 if pn are produced by the defensive
forecasting strategy and yn are produced by Dawid’s
construction. On the other hand, since all test func-
tions I are continuous and so cannot sharply distin-
guish between the cases pn < 0.5 and pn ≥ 0.5, we do
not have any contradiction: neither the test functions
nor any observer who can only measure the pn with a
finite precision can detect the lack of unbiasedness in
the small.

In this paper we are only interested in unbiasedness
in the small when the test functions I are required
to be continuous. Dawid’s construction shows that
unbiasedness in the small is impossible to achieve if I
are allowed to be indicator functions of intervals (such
as [0, 0.5) and [0.5, 1]). To achieve unbiasedness in the
small in this stronger sense, randomization appears
necessary (see, e.g., [18]). It is interesting that already
a little bit of randomization suffices, as explained in
[5].

5 SIMPLIFIED ALGORITHM

Let us assume first that objects are absent, |X| = 1.
It was observed empirically that the performance of
defensive forecasting strategies with a fixed ε does not
depend on ε much (provided it is not too large; e.g., in
the above calculations we assumed ε ≤ 0.5). This sug-
gests letting ε → 0 (in particular, we will assume that
ε ¿ n−2). As the test functions I we will take Gaus-
sian bells Ij with standard deviation σ > 0 located
densely and uniformly in the interval [0, 1]. Letting ≈
stand for approximate equality and using the short-
hand

∑
± f(±) := f(+) + f(−), we obtain:

Sn(p) =
∑
±

∑

j

(±ε)Ij(p)
n−1∏

i=1

(1± εIj(pi)(yi − pi))

=
∑
±

∑

j

(±ε)Ij(p) exp

(
n−1∑

i=1

ln(1± εIj(pi)(yi − pi))

)

≈
∑
±

∑

j

(±ε)Ij(p) exp

(
±ε

n−1∑

i=1

Ij(pi)(yi − pi)

)

≈
∑
±

∑

j

(±ε)Ij(p)

(
1± ε

n−1∑

i=1

Ij(pi)(yi − pi)

)

=
∑
±

∑

j

(±ε)Ij(p)

(
±ε

n−1∑

i=1

Ij(pi)(yi − pi)

)



∝
∑

j

Ij(p)
n−1∑

i=1

Ij(pi)(yi − pi)

=
n−1∑

i=1

K(p, pi)(yi − pi), (8)

where K(p, pi) is the Mercer kernel

K(p, pi) :=
∑

j

Ij(p)Ij(pi).

This Mercer kernel can be approximated by
∫ 1

0

1√
2πσ

exp
(
− (t− p)2

2σ2

)
1√
2πσ

exp
(
− (t− pi)2

2σ2

)
dt

∝
∫ 1

0

exp
(
− (t− p)2 + (t− pi)2

2σ2

)
dt

≈
∫ ∞

−∞
exp

(
− (t− p)2 + (t− pi)2

2σ2

)
dt.

As a function of p, the last expression is proportional
to the density of the sum of two Gaussian random
variables of variance σ2; therefore, it is proportional
to

exp
(
− (p− pi)2

4σ2

)
.

To get an idea of the properties of this forecasting
strategy, which we call the K29 strategy (or algo-
rithm), we run it and the Laplace forecasting strategy
(pn := (k + 1)/(n + 1), where k is the number of 1s
observed so far) on a randomly generated bit sequence
of length 1000 (with the probability of 1 equal to 0.5).
A zero point pn of Sn was found using the simple bi-
section procedure (see, e.g., [9], §§9.2–9.4, for more so-
phisticated methods): (a) start with the interval [0, 1];
(b) let p be the mid-point of the current interval; (c)
if Sn(p) > 0, remove the left half of the current in-
terval; otherwise, remove its right half; (d) go to (b).
We did 10 iterations, after which the mid-point of the
remaining interval was output as pn. Notice that the
values Sn(0) and Sn(1) did not have to be tested. Our
program was written in MATLAB, Version 7, and the
initial state of the random number generator was set
to 0.

Figure 1 shows that the probabilities output by the
K29 (σ = 0.01) and Laplace forecasting strategies are
almost indistinguishable. To see that these two fore-
casting strategies can behave very differently, we com-
plemented the 1000 bits generated as described above
with 1000 0s followed by 1000 1s. The result is shown
in Figure 2. The K29 strategy detects that the proba-
bility p of 1 changes after the 1000th round, and fairly
quickly moves down. When the probability changes
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Figure 1: The First 1000 Probabilities Output by the
K29 (σ = 0.01) and Laplace Forecasting Strategies on
a Randomly Generated Bit Sequence

again after the 2000th round, K29 starts moving to-
ward p = 1, but interestingly, hesitates around the line
p = 0.5, as if expecting the process to reverse to the
original probability of 1.

The Mercer kernel

K(p, pi) = exp
(
− (p− pi)2

4σ2

)

used in these experiments is known in machine learning
as the Gaussian kernel (in the usual parameterization
4σ2 is replaced by 2σ2 or c); however, many other
Mercer kernels also give reasonable results.

If we start from test functions I depending on the ob-
ject, instead of (8) we will arrive at the expression

Sn(p) =
n−1∑

i=1

K((p, xn), (pi, xi))(yi − pi), (9)

where K is a Mercer kernel on the squared product
([0, 1]×X)2. There are standard ways of constructing
such Mercer kernels from Mercer kernels on [0, 1]2 and
X2 (see, e.g., the description of tensor products and
direct sums in [13, 11]). For Sn to be continuous, we
have to require that K be forecast-continuous in the
following sense: for all x ∈ X and all (p′, x′) ∈ [0, 1]×
X, K((p, x), (p′, x′)) is continuous as a function of p.
The overall procedure can be summarized as follows.

K29 Algorithm

Parameter: forecast-continuous Mercer kernel K on
([0, 1]×X)2

FOR n = 1, 2, . . . :
Read xn ∈ X.
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Figure 2: The Probabilities Output by the K29 (σ =
0.01) and Laplace Forecasting Strategies on a Ran-
domly Generated Sequence of 1000 Bits Followed by
1000 0s and 1000 1s

Define Sn(p) as per (9).
Output any root p of Sn(p) = 0 as pn;
if there are no roots, pn := (1 + sign(Sn))/2.
Read yn ∈ {0, 1}.

Computer experiments reported in [16] show that the
K29 algorithm performs well on a standard benchmark
data set. For a theoretical discussion of the K29 algo-
rithm, see [19] (Appendix) and [17].

6 RELATED WORK AND
DIRECTIONS OF FURTHER
RESEARCH

This paper’s methods connect two areas that have
been developing independently so far: probability fore-
casting and classical probability theory. It appears
that, when properly developed, these methods can
benefit both areas:

• the powerful machinery of classical probability
theory can be used for probability forecasting;

• practical problems of probability forecasting may
suggest new laws of probability.

Classical probability theory started from Bernoulli’s
weak law of large numbers (1713) and is the subject
of countless monographs and textbooks. The original
statements of most of its results were for independent
random variables, but they were later extended to the
martingale framework; the latter was reduced to its
game-theoretic core in [12]. The proof of the strong

law of large numbers used in this paper was extracted
from Ville’s [14] martingale proof of the law of the
iterated logarithm (upper half).

The theory of probability forecasting was a topic of in-
tensive research in meteorology in the 1960s and 1970s;
this research is summarized in [2]. Machine learning is
still mainly concerned with categorical prediction, but
the situation appears to be changing. Probability fore-
casting using Bayesian networks is a mature field; the
literature devoted to probability forecasting using de-
cision trees and to calibrating other algorithms is also
fairly rich. So far, however, the field of probability
forecasting has been developing without any explicit
connections with classical probability theory.

Defensive forecasting is indirectly related, in a sense
dual, to prediction with expert advice (reviewed in
[15], §4) and its special case, Bayesian prediction. In
prediction with expert advice one starts with a given
loss function and tries to make predictions that lead
to a small loss as measured by that loss function. In
defensive forecasting, one starts with a law of proba-
bility and then makes predictions such that this law
of probability is satisfied. So the choice of the law
of probability when designing the forecasting strategy
plays a role analogous to the choice of the loss function
in prediction with expert advice.

In prediction with expert advice one combines a pool of
potentially promising forecasting strategies to obtain
a forecasting strategy that performs not much worse
than the best strategies in the pool. In defensive fore-
casting one combines strategies for Skeptic (such as
the strategies corresponding to different test functions
I and different ±ε in §4) to obtain one strategy achiev-
ing an interesting goal (such as unbiasedness in the
small); a strategy for Forecaster is then obtained us-
ing Theorem 1. The possibility of mixing strategies
for Skeptic is as fundamental in defensive forecasting
as the possibility of mixing strategies for Forecaster in
prediction with expert advice.

This paper continues the work started by Foster and
Vohra [4] and later developed in, e.g., [6, 10, 18] (the
last paper replaces the von Mises–style framework of
the previous papers with a martingale framework, as
in this paper). The approach of this paper is similar to
that of the recent paper [5], which also considers de-
terministic forecasting strategies and continuous test
functions for unbiasedness in the small.

The main difference of this paper’s approach from the
bulk of work in learning theory is that we do not make
any assumptions about Reality’s strategy.

The following directions of further research appear to
us most important:



• extending Theorem 1 to other forecasting proto-
cols (such as multi-label classification) and design-
ing efficient algorithms for finding the correspond-
ing pn;

• exploring forecasting strategies corresponding to:
(a) Hoeffding’s inequality, (b) the central limit
theorem, (c) the law of the iterated logarithm (all
we did in this paper was to slightly extend the
strong law of large numbers and then use it for
probability forecasting).
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