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Abstract

We propose a family of learning algorithms
based on a new form of regularization that
allows us to exploit the geometry of the
marginal distribution. We focus on a semi-
supervised framework that incorporates la-
beled and unlabeled data in a general-
purpose learner. Some transductive graph
learning algorithms and standard meth-
ods including Support Vector Machines and
Regularized Least Squares can be obtained
as special cases. We utilize properties of
Reproducing Kernel Hilbert spaces to prove
new Representer theorems that provide the-
oretical basis for the algorithms. As a re-
sult (in contrast to purely graph based ap-
proaches) we obtain a natural out-of-sample
extension to novel examples and are thus
able to handle both transductive and truly
semi-supervised settings. We present exper-
imental evidence suggesting that our semi-
supervised algorithms are able to use unla-
beled data effectively. In the absence of la-
beled examples, our framework gives rise
to a regularized form of spectral clustering
with an out-of-sample extension.

1 Introduction

The problem of learning from labeled and unlabeled
data (semi-supervised and transductive learning) has
attracted considerable attention in recent years (cf.
[11,7,10, 15,18, 17, 9]). In this paper, we consider this
problem within a new framework for data-dependent
regularization. Our framework exploits the geome-
try of the probability distribution that generates the
data and incorporates it as an additional regulariza-
tion term. We consider in some detail the special case
where this probability distribution is supported on a

submanifold of the ambient space.

Within this general framework, we propose two spe-
cific families of algorithms: the Laplacian Regular-
ized Least Squares (hereafter LapRLS) and the Lapla-
cian Support Vector Machines (hereafter LapSVM).
These are natural extensions of RLS and SVM respec-
tively. In addition, several recently proposed trans-
ductive methods (e.g., [18, 17, 1]) are also seen to be
special cases of this general approach. Our solution
for the semi-supervised case can be expressed as an
expansion over labeled and unlabeled data points.
Building on a solid theoretical foundation, we obtain
a natural solution to the problem of out-of-sample ex-
tension (see also [6] for some recent work).When all
examples are unlabeled, we obtain a new regularized
version of spectral clustering.

Our general framework brings together three distinct
concepts that have received some independent recent
attention in machine learning: Regularization in Re-
producing Kernel Hilbert Spaces, the technology of
Spectral Graph Theory and the geometric viewpoint
of Manifold Learning algorithms.

2 The Semi-Supervised Learning
Framework

First, we recall the standard statistical framework of
learning from examples, where there is a probability
distribution P on X x R according to which training
examples are generated. Labeled examples are (z,y)
pairs drawn from P. Unlabeled examples are simply
z € X drawn from the marginal distribution Px of P.

One might hope that knowledge of the marginal Px
can be exploited for better function learning (e.g. in
classification or regression tasks). Figure 1 shows
how unlabeled data can radically alter our prior be-
lief about the appropriate choice of classification func-
tions. However, if there is no identifiable relation be-



Figure 1: Unlabeled data and prior beliefs
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tween Px and the conditional P(y|z), the knowledge
of Px is unlikely to be of much use. Therefore, we
will make a specific assumption about the connection
between the marginal and the conditional. We will as-
sume that if two points z1,z2 € X are close in the in-
trinsic geometry of Px, then the conditional distribu-
tions P(y|z1) and P(y|z2) are similar. In other words,
the conditional probability distribution P(y|z) varies
smoothly along the geodesics in the intrinsic geome-
try of Px.

We utilize these geometric ideas to extend an estab-
lished framework for function learning. A number of
popular algorithms such as SVM, Ridge regression,
splines, Radial Basis Functions may be broadly in-
terpreted as regularization algorithms with different
empirical cost functions and complexity measures in
an appropriately chosen Reproducing Kernel Hilbert
Space (RKHS).

For a Mercer kernel K : X x X — R, there is an asso-
ciated RKHS H g of functions X — R with the corre-
sponding norm || || k. Given a set of labeled examples
(zi,vi),1=1,...,1 the standard framework estimates
an unknown function by minimizing

f* = argmin + Zm,y@, D+ @
feEHK i=1

where V' is some loss function, such as squared loss
(yi — f(z;))? for RLS or the soft margin loss func-
tion for SVM. Penalizing the RKHS norm imposes
smoothness conditions on possible solutions. The
classical Representer Theorem states that the solution
to this minimization problem exists in # x and can be

written as .
i=1

Therefore, the problem is reduced to optimizing
over the finite dimensional space of coefficients «;,
which is the algorithmic basis for SVM, Regularized
Least Squares and other regression and classification
schemes.

Our goal is to extend this framework by incorporating
additional information about the geometric structure

of the marginal Px. We would like to ensure that the
solution is smooth with respect to both the ambient
space and the marginal distribution Px. To achieve
that, we introduce an additional regularizer:

f* = argmin — ZV i, Yi, ) +vall fllx +llFl17 (3)
fEHK i—1

where ||f||2 is an appropriate penalty term that
should reflect the intrinsic structure of Px. Here v4
controls the complexity of the function in the ambient
space while vy controls the complexity of the function
in the intrinsic geometry of Px. Given this setup one
can prove the following representer theorem:

Theorem 2.1. Assume that the penalty term || f||1 is suf-
ficiently smooth with respect to the RKHS norm || f|| k.
Then the solution f* to the optimization problem in Eqn 3
above exists and admits the following representation

@ = [ oK@y P +2a, (zi,2) (4

where M = supp{Px } is the support of the marginal Px.

The proof of this theorem runs over several pages and
is omitted for lack of space. See [4] for details includ-
ing the exact statement of the smoothness conditions.

In most applications, however, we do not know Px.
Therefore we must attempt to get empirical estimates
of || f|lz- Note that in order to get such empirical esti-
mates it is sufficient to have unlabeled examples.

A case of particular recent interest is when the
support of Px is a compact submanifold M C
X = R". In that case, a natural choice for ||f]|r
is [, (Vmf,Vmf). The optimization problem be-
comes

l
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The term [, (V. f, V. f) may be approximated on
the basis of labeled and unlabeled data using the
graph Laplacian ([1]). Thus, given a set of [ labeled
examples {(z;,;)}._; and a set of u unlabeled exam-
ples {z; }jjff, we consider the following optimiza-
tion problem :

V(i,yi, f) +vallfllk +

il ©




where f = [f(21), ..., f(213u)], and L is the graph
Laplacian given by L = D — W where W;; are the
edge weights in the data adjacency graph. Here, the
diagonal matrix D is given by D;; = Eé‘:i Wi;. The
normalizing coefficient m is the natural scale fac-
tor for the empirical estimate of the Laplace operator.
On a sparse adjacency graph it may be replaced by
it Wi,

The following simple version of the representer the-
orem shows that the minimizer has an expansion in
terms of both labeled and unlabeled examples and is
a key to our algorithms.

Theorem 2.2. The minimizer of optimization problem 6
admits an expansion

I+u

[(z) = Z ;K (2;, ) ()

in terms of the labeled and unlabeled examples.

The proof is a variation of the standard orthogonality
argument, which we omit for lack of space.

Remarks : (a) Other natural choices of || || exist. Ex-
amples are (i) heat kernel (ii) iterated Laplacian (iii)
kernels in geodesic coordinates. The above kernels
are geodesic analogs of similar kernels in Euclidean
space. (b) Note that K restricted to M (denoted by
K ) is also a kernel defined on M with an associated
RKHS Haq of functions M — R. While this might
suggest \fll; = |flullicys (Flnt is f restricted to M)
as a reasonable choice for || f||s, it turns out, that for
the minimizer f* of the corresponding optimization
problem we get ||f*|lr = [|f*||x, yielding the same
solution as standard regularization, although with a
different .

3 Algorithms

We now present solutions to the optimization prob-
lem posed in Eqn (6). To fix notation, we assume we
have [ labeled examples {(z;,y;)}._; and u unlabeled
examples {z; };jrf We use K interchangeably to de-
note the kernel function or the Gram matrix.

3.1 Laplacian Regularized Least Squares
(LapRLS)

The Laplacian Regularized Least Squares algorithm
solves Eqn (6) with the squared loss function:
V(zi,yi, f) = (yi — f(x;))% Since the solution is
of the form given by (7), the objective function can
be reduced to a convex differentiable function of the
(I + u)-dimensional expansion coefficient vector o =

[@1, ..., iyt whose minimizer is given by :

!
(u7+’ WLK)*Y (8)

a* = (JK +yall +
Here, K is the (I + u) x (I + u) Gram matrix over la-
beled and unlabeled points; Y is an (I + w) dimen-
sional label vector given by - Y = [y1,...,¥;,0,...,0]
and J is an (I + u) x (I + u) diagonal matrix given by
- J = diag(1,...,1,0,...,0) with the first | diagonal
entries as 1 and the rest 0.

Note that when v; = 0, Eqn (8) gives zero coeffi-
cients over unlabeled data. The coefficients over la-
beled data are exactly those for standard RLS.

3.2 Laplacian Support Vector Machines (LapSVM)

Laplacian SVMs solve the optimization problem in
Egn. 6 with the soft margin loss function defined as
V(zi,yi, f) = max(0,1 — y; f(x:)),y: € {—1,+1}. In-
troducing slack variables, using standard Lagrange
Multiplier techniques used for deriving SVMs [16],
we first arrive at the following quadratic program in
[ dual variables 3 :

l

§* =max Y i~ 247QB ©

1
AER i=1

subject to the Contlraints:z:i.:1 yiB; =0, 0 < 8; <

1
7 »i=1,..1 ,where

VI -1 7T
2LK) J'Y (10)

=YJK2vysl +2
Q (2yal + D)

Here, Y is the diagonal matrix Y;; = y;, K is the Gram
matrix over both the labeled and the unlabeled data;
L is the data adjacency graph Laplacian; and ] is an
I x (I + u) matrix givenby - J;; = 1ifi = jand z; isa
labeled example, and J;; = 0 otherwise. To obtain the
optimal expansion coefficient vector a* € R+, one
has to solve the following linear system after solving
the quadratic program above :

v 1’02 LK) JTYs  (11)

o = (2yal + 2
One can note that when v; = 0, the SVM QP and
Eqns (10,11), give zero expansion coefficients over the
unlabeled data. The expansion coefficients over the
labeled data and the Q matrix are as in standard SVM,
in this case. Laplacian SVMs can be easily imple-
mented using standard SVM software and packages
for solving linear systems.

The Manifold Regularization algorithms and some
connections are presented in the table below. For
Graph Regularization and Label Propagation see [12,
3,18].



Manifold Regularization Algorithms

Input: I labeled examples {(z;,y;)}.—;, u unlabeled examples {z; }éi’; 1
Output: Estimated function f : R* - R
Step 1 » Construct data adjacency graph with (I+u) nodes using, e.g, k nearest neighbors. Choose
edge weights W;;, e.g. binary weights or heat kernel weights W;; = e~ll#i =2 I /4t
Step 2 » Choose a kernel function K (z,y). Compute the Gram matrix K;; = K(z;, ;).
Step 3 » Compute graph Laplacian matrix : L = D — W where D is a diagonal matrix given by
I+u
Dy = E;l Wij.
Step 4 » Choose 74 and 7;.
Step 5 » Compute a* using Eqn (8) for squared loss (Laplacian RLS) or using Eqns (10,11) together
with the SVM QP solver for soft margin loss (Laplacian SVM).
Step 6 » Output function f*(z) = Ei;”l‘ o K (z, ).
Connections to other algorithms
Y4 > 0 vr >0 | Manifold Regularization
Y4 > 0 vr =0 | Standard Regularization (RLS or SVM)
v4 =0 vr >0 | Out-of-sample extension for Graph Regularization (RLS or SVM)
v4 =0 vr = 0 | Out-of-sample extension for Label Propagation (RLS or SVM)
Y4 — 0 vr =0 | Hard margin (RLS or SVM)

4 Related Work

In this section we survey various approaches to semi-
supervised and transductive learning and highlight
connections of Manifold Regularization to other algo-
rithms.

Transductive SVM (TSVM) [16], [11]: TSVMs are
based on the following optimization principle :

l
f*= argmin 02(1 —yif (@) +
fEHK Y1415 Yitu i=0
l4+u
+C* Z (1 —wif @)+ + 1%

i=l41

which proposes a joint optimization of the SVM ob-
jective function over binary-valued labels on the unla-
beled data and functions in the RKHS. Here, C, C* are
parameters that control the relative hinge-loss over la-
beled and unlabeled sets. The joint optimization is
implemented in [11] by first using an inductive SVM
to label the unlabeled data and then iteratively solv-
ing SVM quadratic programs, at each step switching
labels to improve the objective function. However
this procedure is susceptible to local minima and re-
quires an unknown, possibly large number of label
switches before converging. Note that even though
TSVM were inspired by transductive inference, they
do provide an out-of-sample extension.

Semi-Supervised SVMs (S3VM) [5] : S*VM incorpo-
rate unlabeled data by including the minimum hinge-
loss for the two choices of labels for each unlabeled

example. This is formulated as a mixed-integer pro-
gram for linear SVMs in [5] and is found to be in-
tractable for large amounts of unlabeled data. The
presentation of the algorithm is restricted to the lin-
ear case.

Measure-Based Regularization [9]: The conceptual
framework of this work is closest to our approach.
The authors consider a gradient based regularizer
that penalizes variations of the function more in high
density regions and less in low density regions lead-
ing to the following optimization principle:

l

f*=argminy_V(f(z:),4:) +

g
y / (Vf(2), V §(2))plz)de
X

where p is the density of the marginal distribution
Px. The authors observe that it is not straightforward
to find a kernel for arbitrary densities p, whose associ-
ated RKHS norm is [ (V f(z),V f(z))p(z)dz. Thus, in
the absence of a representer theorem, the authors pro-
pose to perform minimization over the linear space F
generated by the span of a fixed set of basis functions
chosen apriori. It is also worth noting that while [9]
uses the gradient V f(z) in the ambient space, we use
the penalty functional associated with the gradient
Vmf over a submanifold. In a situation where the
data truly lies on or near a submanifold M, the dif-
ference between these two penalizers can be signifi-
cant since smoothness in the normal direction to the
data manifold is irrelevant to classification or regres-
sion. The algorithm in [9] does not demonstrate per-



formance improvements in real world experiments.
Graph Based Approaches See e.g., [7, 10, 15, 17,
18, 1]: A variety of graph based methods have been
proposed for transductive inference. However, these
methods do not provide an out-of-sample extension.
In [18], nearest neighbor labeling for test examples
is proposed once unlabeled examples have been la-
beled by transductive learning. In [10], test points
are approximately represented as a linear combina-
tion of training and unlabeled points in the feature
space induced by the kernel. We also note the very
recent work [6] on out-of-sample extensions for semi-
supervised learning. For Graph Regularization and
Label Propagation see [12, 3, 18]. Manifold regular-
ization provides natural out-of-sample extensions to
several graph based approaches. These connections
are summarized in the Table on page 5.

Other methods with different paradigms for using
unlabeled data include Cotraining [8] and Bayesian
Techniques, e.g., [14].

5 Experiments

We performed experiments on a synthetic dataset
and two real world classification problems arising
in visual and speech recognition. = Comparisons
are made with inductive methods (SVM, RLS). We
also compare with Transductive SVM (e.g., [11])
based on our survey of related algorithms in Section
4. For all experiments, we constructed adjacency
graphs with 6 nearest neighbors. Software and
Datasets for these experiments are available at
http://manifold.cs.uchicago.edu/manifold_regularization.
More detailed experimental results are presented in

[4].

5.1 Synthetic Data: Two Moons Dataset

The two moons dataset is shown in Figure 2. The best
decision surfaces across a wide range of parameter
settings are also shown for SVM, Transductive SVM
and Laplacian SVM. The dataset contains 200 exam-
ples with only 1 labeled example for each class. Fig-
ure 2 demonstrates how TSVM fails to find the op-
timal solution. The Laplacian SVM decision bound-
ary seems to be intuitively most satisfying. Figure 3
shows how increasing the intrinsic regularization al-
lows effective use of unlabeled data for constructing
classifiers.

5.2 Handwritten Digit Recognition

In this set of experiments we applied Laplacian SVM
and Laplacian RLSC algorithms to 45 binary classi-
fication problems that arise in pairwise classification

of handwritten digits. The first 400 images for each
digit in the USPS training set (preprocessed using
PCA to 100 dimensions) were taken to form the train-
ing set and 2 of these were randomly labeled. The re-
maining images formed the test set. Polynomial Ker-
nels of degree 3 were used, and v/ = 0.05(C = 10)
was set for inductive methods following experiments
reported in [13]. For manifold regularization, we
chose to split the same weight in the ratio 1 : 9
so that y4I = 0.005, % = 0.045. The observa-
tions reported in this section hold consistently across
a wide choice of parameters. In Figure 4, we com-
pare the error rates of Laplacian algorithms, SVM and
TSVM, at the precision-recall breakeven points in the
ROC curves (averaged over 10 random choices of la-
beled examples) for the 45 binary classification prob-
lems. The following comments can be made: (a) Man-
ifold regularization results in significant improve-
ments over inductive classification, for both RLS and
SVM, and either compares well or significantly out-
performs TSVM across the 45 classification problems.
Note that TSVM solves multiple quadratic programs
in the size of the labeled and unlabeled sets whereas
LapSVM solves a single QP in the size of the labeled
set, followed by a linear system. This resulted in sub-
stantially faster training times for LapSVM in this ex-
periment. (b) Scatter plots of performance on test and
unlabeled data sets confirm that the out-of-sample ex-
tension is good for both LapRLS and LapSVM. (c)
Finally, we found Laplacian algorithms to be signif-
icantly more stable with respect to choice of the la-
beled data than the inductive methods and TSVM, as
shown in the scatter plot in Figure 4 on standard devi-
ation of error rates. In Figure 5, we plot performance
as a function of number of labeled examples.

5.3 Spoken Letter Recognition

This experiment was performed on the Isolet
database of letters of the English alphabet spoken in
isolation (available from the UCI machine learning
repository). The data set contains utterances of 150
subjects who spoke the name of each letter of the En-
glish alphabet twice. The speakers are grouped into 5
sets of 30 speakers each, referred to as isoletl through
isolet5. For the purposes of this experiment, we chose
to train on the first 30 speakers (isoletl) forming a
training set of 1560 examples, and test on isolet5 con-
taining 1559 examples (1 utterance is missing in the
database due to poor recording). We considered the
task of classifying the first 13 letters of the English al-
phabet from the last 13. The experimental set-up is
meant to simulate a real-world situation: we consid-
ered 30 binary classification problems corresponding
to 30 splits of the training data where all 52 utterances



Figure 2: Two Moons Dataset: Best decision surfaces using RBF kernels for SVM, TSVM and Laplacian SVM.

Labeled points are shown in color, other points are unlabeled.
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Figure 3: Two Moons Dataset:

Figure 4: USPS Experiment - Error Rates at Precision-Recall Breakeven points for 45 binary classification prob-

lems
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Figure 5: USPS Experiment - Mean Error Rate at Precision-Recall Breakeven points as a function of number of

labeled points (T: Test Set, U: Unlabeled Set)
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Figure 6: Isolet Experiment - Error Rates at precision-recall breakeven points of 30 binary classification problems
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of one speaker were labeled and all the rest were left
unlabeled. The test set is composed of entirely new
speakers, forming the separate group isolet5.

We chose to train with RBF kernels of width ¢ = 10
(this was the best value among several settings with
respect to 5-fold cross-validation error rates for the
fully supervised problem using standard SVM). For
SVM and RLSC we set vl = 0.05 (C' = 10) (this was
the best value among several settings with respect to
mean error rates over the 30 splits). For Laplacian
RLS and Laplacian SVM we set y41 = # = 0.005.
In Figure 6, we compare these algorithms. The fol-
lowing comments can be made: (a) LapSVM and
LapRLS make significant performance improvements
over inductive methods and TSVM, for predictions on
unlabeled speakers that come from the same group
as the labeled speaker, over all choices of the labeled
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speaker. (b) On Isolet5 which comprises of a separate
group of speakers, performance improvements are
smaller but consistent over the choice of the labeled
speaker. This can be expected since there appears to
be a systematic bias that affects all algorithms, in fa-
vor of same-group speakers. For further details, see

[4].

5.4 Regularized Spectral Clustering and Data
Representation

When all training examples are unlabeled, the op-
timization problem of our framework, expressed in
Eqn 6 reduces to the following clustering objective
function :

i 2 4 fTLf 12
frg,l{r;vllfllK +fLf (12)



Figure 7: Two Moons Dataset: Regularized Clustering
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where v = 74 ig a regularization parameter that ~ References

controls the complexity of the clustering function. To
avoid degenerate solutions we need to impose some
additional conditions (cf. [2]). It can be easily seen
that a version of Representer theorem holds so that
the minimizer has the form f* = Y | a;K(z;,-) By
substituting back in Eqn. 12, we come up with the fol-
lowing optimization problem:

a= argmin 7||f|l% + fTLf
1T Ka=0
aTK?2a=1
where 1 is the vector of all ones and a = (a1,...,qy)
and K is the corresponding Gram matrix.

Letting P be the projection onto the subspace of R*
orthogonal to K1, one obtains the solution for the
constrained quadratic problem, which is given by the
generalized eigenvalue problem

P(yK + KLK)Pv = A\PK*Pv (13)
The final solution is given by a = Pv, where v is the
eigenvector corresponding to the smallest eigenvalue.

The framework for clustering sketched above pro-
vides a regularized form spectral clustering, where «y
controls the smoothness of the resulting function in
the ambient space. We also obtain a natural out-of-
sample extension for clustering points not in the origi-
nal data set. Figure 7 shows the results of this method
on a two-dimensional clustering problem.

By taking multiple eigenvectors of the system in
Eqn. 13 we obtain a natural regularized out-of-sample
extension of Laplacian eigenmaps [1]. This leads to
new method for dimensionality reduction and data
representation. Further study of this approach is a di-
rection of future research.
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