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Abstract

We present methods for dealing with missing
variables in the context of Gaussian Processes
and Support Vector Machines. This solves an
important problem which has largely been ig-
nored by kernel methods: How to systemati-
cally deal with incomplete data? Our method
can also be applied to problems with partially
observed labels as well as to the transductive
setting where we view the labels as missing
data.

Our approach relies on casting kernel meth-
ods as an estimation problem in exponen-
tial families. Hence, estimation with miss-
ing variables becomes a problem of comput-
ing marginal distributions, and finding effi-
cient optimization methods. To that extent
we propose an optimization scheme which ex-
tends the Concave Convex Procedure (CCP)
of Yuille and Rangarajan, and present a
simplified and intuitive proof of its conver-
gence. We show how our algorithm can be
specialized to various cases in order to effi-
ciently solve the optimization problems that
arise. Encouraging preliminary experimen-
tal results on the USPS dataset are also pre-
sented.

1 Introduction

Kernel methods [I2] have been remarkably success-
ful for standard classification and regression problems.
However, they have also been found very effective
in dealing with a variety of related learning prob-
lems such as sequence annotation, conditional ran-
dom fields, multi-instance learning, and novelty detec-
tion. Many algorithms for Gaussian Processes (GP)
and Support Vector Machines (SVM) bear witness of
this. One problem, however, has remained completely
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untouched so far: How to deal with datasets which
exhibit missing variables?

In the following, we will develop a framework to deal
with such cases in a systematic fashion. Our analy-
sis is based on the observation that kernel methods
can be written as estimators in an exponential family.
More specifically, Gaussian Processes can be seen to be
maximizing the negative log-posterior under a normal
prior on the natural parameter of the exponential den-
sity, whereas Support Vector Machines maximize the
likelihood ratio. Based on this observation, we provide
a method for dealing with missing variables in such a
way that standard kernel methods arise as a special
case, whenever there are no missing variables.

To solve the optimization problems arising in this con-
text — a concave-convex objective function with both
convex and concave constraints — we extend the CCP
algorithm of [16] for finding local optima and give an
intuitive proof for its convergence.

The rest of the paper is organized as follows. In
Section we discuss exponential families in feature
space and in Sections we present methods to
deal with missing data. In Section [2.5] we show how
Gaussian Processes and Support Vector Machines can
be extended to deal with missing data. Section
is devoted to the discussion of the Constrained Con-
cave Convex Procedure (CCCP) and its application
to Gaussian Processes and Support Vector Machines.
We discuss some implementation tips in Section [4] and
present experimental results on the USPS dataset in
Section [l An outlook and a discussion in Section [6]
conclude the paper.

2 The Model for Incomplete Data

2.1 Exponential Families

We begin with a definition of exponential families: De-
note by X the domain of observations, and let ¢(x)
with x € X refer to a vector of sufficient statistics.



Then, a member of the exponential family of densities
can be defined in exponential normal form via

p(x;0) = po(x) exp ((¢(x),0) — 9(0)) , (1)

where
4(6) = log /X po(@) exp(((z), 0)) dz. (2)

Here, po(z) is a suitably chosen underlying measure,
0 is the natural parameter, g(#) is the log-partition
function, often called the cumulant generating func-
tion, and (-,-) denotes a scalar product in an Eu-
clidean space, or more generally in a Reproducing Ker-
nel Hilbert Space (RKHS) H. Without loss of gener-
ality, and for ease of exposition, we will ignore the
underlying measure pg(x) for the rest of the paper.

Let Y denote the space of labels, and ¢(z,y) be the
sufficient statistics of the joint distribution associated
with (x,y) € X x Y. For the purpose of classification
we are mainly concerned with estimating conditional
probabilities. Therefore, we extend the exponential
families framework to conditional probabilities. Here
we have

p(ylz; 0) = exp ((¢(z,y),0) —g(0]x)),  (3)

and

9(01) = log / exp((6(x, ), 0)) dy.  (4)

Y

In analogy to the above case, g(6|z) is commonly re-
ferred to as the conditional log-partition function.

Both ¢(#) and g(|z) are convex C* functions in 6
and they can be used to compute cumulants of the
distribution [6, [4], for instance:

09(0) = Epme)lo(z)],

9pg(0) = Varyelo(z)],
9og(0z) = Epyelo(z,y)lzl,
agOlz) = Varyqyelo(z,y)lz].

2.2 Incomplete Training Data

In the following, we will deal with the problem of esti-
mating p(y|x; 0) or a related quantity based on a set of
observations (z;,y;) € X x Y with ¢ = 1,...,m. More
specifically, we allow that some of the x; have been
observed only partially, that is, we may partition the
observations as z; = (22, 2¥), where x? represents the
observed part and z} is the unobserved part of the
data (see [3] for a detailed description of how miss-
ing data may arise and how it is typically treated in
an Expectation Maximization (EM) context). Observe

that we allow for different sets of missing variables for
different data points.

The first step is to extend to partially observed
data. Clearly

p(xu’ y|xo; 0) = €xXp (<¢($Oa xu’ y)a 0> - g(6|xo)) . (5)
Integration over the unobserved part of x, that is, ",
and direct calculation yields

pol0) = [ exp (8,2 0).60) - gl6la")) do”

= exp(g(0]z®,y) — g(0]27)), (6)

with a suitable definition of g(0|x°, y). In other words,
the conditional probability p(y|x°;0) is now given by
the exponential of the difference of two conditional log-
partition functions. This poses two problems:

e Computing the log-partition function is a non-
trivial problem [I4]. In particular, the compu-
tation of g(f|z°) and ¢(f|z°,y) may pose addi-
tional difficulties. This is because the joint suffi-
cient statistics might lead to an intractable inte-
gral. However, in many real life applications the
data is discrete and only a small number of vari-
ables are missing. In these cases, one can either
resort to brute force computation or exploit the
algebraic structure of the integrand.

e The negative log-likelihood, —log(p(y|z?;0)),
ceases to be a convex function. This means that
the optimization problems arising from estimation
with missing variables may involve many local op-
tima. In Section [3] we will present an optimiza-
tion method to deal with this problem by extend-
ing the CCP of [16] as well as a second method
based on the EM algorithm.

2.3 Incomplete Labels

Using ideas similar to those used for handling missing
training data we can also handle data with missing
labels. As before, we partition y; = (y¢,y¥) and inte-
grate out the unobserved part of the labels to yield

p71ai0) = [ exp (905,60 — 9(6l) dy”

= exp(g(0|z,y°) — g(0]z)). (7)

@ can then be used to perform Maximum Likelihood
Estimation (MLE) or Maximum A Posteriori (MAP)
estimation. As before, the conditional probability
p(y°|z; 0) is given by the exponential of the difference
of two conditional log-partition functions. Note that
both types of missing data can also be combined in a
straightforward manner using the conditional density

p(y°lz°; 0).



2.4 Transduction

Transduction can be viewed as an extreme case of in-
complete labels. Typically, we are given a set of ob-
servations with a few missing labels. The task is to
predict these missing labels. We now compute a prob-
ability distribution on the missing labels, given by

p(y"|x,y%; 0) = exp ((p(x,y°,y"),0) — g(0]z,y°)) .

In order to compute the above density we need to com-
pute

o0f.7) =log | exp((ote. vy, 0) dy”. - (8)

If the space of labels ) is large, and many labels are
missing, then computing the above integral is a non-
trivial task and we need to resort to Monte-Carlo sam-
pling methods or other similar high dimensional inte-
gration techniques in order to perform prediction.

2.5 Conditional Probabilities and Estimators

Our discussion so far has been very generic. In this
section, we focus on two particular kernel algorithms.
First, we show how Gaussian Processes can be viewed
as estimators in exponential families. Then, we dis-
cuss the well known Support Vector Machines in the
context of exponential families. Using our discussion
above, we also show how both these algorithms can
handle missing data in a natural way.

Gaussian Process Classification: If the training
data is assumed to be generated IID from an expo-
nential family distribution, the MLE problem for ex-
ponential families is to minimize

—logp(d|X,Y) = > —logp(yilxs,0)
=1
= ZQW%‘) — (w4, 9i),0) -
=1

Since we are considering an exponential family in fea-
ture space, the sufficient statistics are possibly infinite
dimensional. To avoid over-fitting the data we con-
sider a prior over the parameter 6.

One can show [I] that Gaussian Processes can be seen
as estimators, where the prior on the natural parame-
ter is normal, that is,

p(0) s exp (551017

To see this, observe that under the above prior
t(z,y) = (P(x,y),0) is a Gaussian Process. This is

because 6 is normally distributed with zero mean, and
Eg[t(z,y)] = 0 and the covariance (kernel) matrix is
given by

k((x,y), (2",9) = (¢(x,y), &(2",y)) -

This argument is similar to the one used by [I5] to es-
tablish a connection between Support Vector Machines
and Gaussian Processes.

As a special case we let Y = {£1} and con-
sider the choice ¢(z,y) = y¢'(x). This gives us
k((z,y), (¢, y') = wiy; - K'(z,2") where ¥ (z,2) =
(¢'(z), ¢/ (z")).

Now using the normal prior, the MAP estimation
problem for exponential families is to minimize

ogp(01X, V)= 3" ~logplules. 0)+ T (9)
i=1
m 0 2
=3 g(0fs) — (i, 1), 0) + LA
20

1

.
Il

Observe that the MAP estimation problem @D
is convex, and by the representer theorem [I1],
the minimizer #* can be found in the span of
{¢(z;,y) wherey € Y}. So far, this interpretation
of Gaussian Processes is consistent with the classical
viewpoint.

We now turn to the setting with incomplete input data
(the setting with missing labels is analogous and can
be handled similarly). Here, all we need to do is to
replace p(y;|z;,0) by p(yi|z?,6). Using (6) this leads
to the following problem:

o . . “ o o 1
mlmmlzez [9(0]x?) — g(0]x%, v:)] + EH@HQ- (10)
i=1

Unlike (@, the above problem is no longer convex, and
we will need a more sophisticated method to solve it.
In Section [3] we show how the CCCP method can be
used to solve this optimization problem efficiently.

It is easy to check that g(6]z¢,y:;) = (p(x9,v:),0) if
x$ = x;, that is, we recover the original Gaussian Pro-
cess optimization problem whenever the set of obser-
vations is complete.

Support Vector Classification: Gaussian Pro-
cesses maximize the log-likelihood using a normal prior
on the parameters. Instead of directly maximizing
the log-likelihood, one may want to maximize the log-
likelihood ratio between the correct label and the most
likely incorrect labeling [9]. This leads to the following



cost function:
p(y|z; 0)
maxg, p(glz; 0) )
= ((b(x,y),H} — max <¢($,Zj),9> . (12)
J#y

r(z,y;0) = log

In order to take the margin into account, we use
C(SIJ7 Y; 0) = max(l - 7’(1}1', Yi; 9)7 0)
which is essentially a clipped version of r(z,y;0).

To see the connection to binary Support Vector Ma-
chines, assume Y € {£1} and ¢(z,y) = §¢'(x).
Then, r(z,y;0) = yi (¢'(z),¢'(z')) and c(z,y;0) =
max (1 —y; (¢'(x), p(x’)),0) which essentially recovers
the hinge loss. Therefore, our loss function is simply a
generalization of the hinge loss to multi-class Support
Vector Machines [9].

In fact, the MAP estimate in this case is found by
solving

m

. 1
arggllnzc(xiayﬁe)_" EHGHQ- (13)
=1

To recover soft margin estimates, one simply needs to
introduce slack variables into the above equation.

The main difference between the Support Vector Ma-
chine and the Gaussian process optimization problem
is that, in the case of Support Vector Machines, the
cost function c(z,y;6) does not depend on the log-
partition function. Instead, it is given by the difference
between scalar products.

An extension to missing variables is now straightfor-
ward: all we need to do is to replace the conditional
probability estimates in the fully observed case by their
counterparts for partially observed data. Using (@

and we have
r(x,y;0) = g(0]z°,y) — max g(0|z°, 7).
97y

Finally, we can introduce slack variables and extend
(13) into a constrained optimization problem for miss-
ing variables:

1 m
minimizeﬁHHHQ + ;& (14a)

s.t. g(0|z7,yi) — n;axgwlxi’, g)>1—¢& (14b)
Y7Yi

The difference between and is that now the
constraints, as specified by 7 are non longer con-
vex. Therefore, the minimization is no longer a con-
vex problem, and we need, for instance, an iterative
scheme to enforce these constraints.

As before, if ¥ = z;, that is, if no data is missing, we
have g(8]x9,y;) = (d(x9,v:),0) and reduces to a
version of which incorporates slack variables.

3 Optimization

As stated in Section the optimization problems
that arise when data is missing are no longer convex.
Hence, it is a non-trivial task to solve them. In the
case of Gaussian Processes one could invoke an EM
like algorithm to perform maximum likelihood estima-
tion over the joint set of parameters (6, {z¥,..., 2% })
directly. But, it is not clear how such an algorithm
can be extended to incorporate non-convex constraints
which arise in the case of Support Vector Machines
with missing variables.

Instead, we take a small detour: EM can also be
viewed as a consequence of the CCP [I6]. This pro-
vides us with a strategy to use similar algorithms for
constrained problems by extending CCP to the Con-
strained CCP.

3.1 The Constrained Concave Convex
Procedure

Theorem 1 (Constrained CCP) Denote by f;, g,
real-valued conver and differentiable functions on a
vector space X for all i € {0,...,n}, and let ¢; € R
fori € {1,...,n}. Then, Algorithm |1 converges to
a local minimum of the following optimization prob-
lem, provided that the linearization of the nonconvex
constraints in conjunction with the convex constraints
satisfy suitable constraint qualifications at the point of
convergence of the algorithm.

minimize fo(z) — go(z)
s.t. fi(x) —gi(z) < ¢ foralll <i<n

(15a)
(15b)

In the following, we denote by T,{f,z}(z') the n't
order Taylor expansion of f at location z, that is,

Tu{f,a}(a') = f(@) + (@' — 2,0, f()).

Algorithm 1 Constrained Concave Convex Procedure

Initialize xy with a random value

repeat
find x¢41 as the solution of the convex optimiza-
tion problem

(16a)
(16Db)

minimize fo(z) — T1{g0, z+ } ()
st fi(z) = Ti{gi, 2} (2) < Vi

until convergence of x;




Proof The key idea of the proof is that for any convex
function, the first order Taylor expansion is a lower
bound, that is, g;(x) > T1{g;, z+}(x) for all z,z; € X.
Consequently for all z,z; € X and 0 <17 < n we have

filw) = Ti{gi, v} (@) > file) —gi(z).  (17)
By construction, equality holds at the point of expan-
sion z = x¢. This means that for every xy, is an
upper restriction of . In other words, every x fea-

sible in (L6b) is also feasible in (L5b]). Moreover, the
objective function ([L6al) is an upper bound of ([15al).

When x = x;, the values of and match. Con-
sequently, minimizing leads to z;41 with a lower
value of the objective function . This is because
of two facts: Firstly, presents an upper bound on
. Secondly, when replacing the expansion at x; by
the one at ;11 again the objective function may only
decrease. To see this, observe that, by convexity we
have

Jo(xiy1) = Ti{go, v} (wiq1) > fo(wigr)
but, by definition we have

fo(ﬂCtH) - 9()($t+1) = f()($t+1) - T1{90,$t+1}($t+1)~

Next, we need to prove that if the x; converge, then we
actually arrived at a minimum or a saddlepoint of the
optimization problem. We show this by proving that
at stationarity a saddlepoint in the Lagrange function
corresponding to is also a saddlepoint in the La-
grange function corresponding to with the same
set of dual variables.

- 90($t+1)7

Now, assume that the above algorithm converges to =*
and let a® be the dual variables of . By stationar-
ity, the convex restriction at z* satisfies the constraint
qualifications and the Lagrange function of has a
saddle point in z*, o*.

However, by construction, the linearization is tight at
¥, so o also satisfies the Kuhn-Tucker conditions for
and the derivatives of the Lagrangian of
match those of their counterpart from at z*. So
we showed that if the convex restriction has a saddle
point in the Lagrangian, so does the original problem.
|

This gives us a simple procedure to perform optimiza-
tion even in a constrained nonconvex problem: simply
linearize the constraints at every step and solve the
resulting convex problem.

Remark 2 (CCP) The CCP is a special case of the-
oreml[], where there are no constraints. In this case the
first order conditions for the solution of amount
to Opfo(0) — Opgo(0:) = 0. This is exactly what [16]

propose.

3.2 Application to GP Classification

Recall that for Gaussian Process classification with
missing variables the MAP-estimation problem
becomes that of solving

1
mlmmlzez O)z7) — g(0|z7,y:)] + @HQH?

We define
909(0)2°) = Ep(z,y50)[0(z, y)|2° 0] := E(0,2,y),
and
999012, y) = Ep(a,yi0)[¢(x,y)[2°, 33 0] := F(0, 2,y).

Using the above, and the first-order optimality condi-
tions of Remark [2] the Gaussian Process optimization
problem can now be expressed as:

ZE(Q,!E“y) -

Note that while the first expectation depends on 6, the
second one is taken for a fized value 6;, which is the
solution of the previous iteration of the optimization
problem. We can now specialize Algorithm [l to this
case by iterating the above repeatedly with respect
to #. To show that our algorithm is identical to the
EM algorithm, we show that an identical optimization
problem arises out of the EM algorithm.

1
F(Gt,xi,yi) + ;9 =0. (18)

Recall that in the expectation step of EM one computes
the value of the expected log-likelihood with respect to
the given set of parameters 6;, that is, we compute

m

Ep(z,:0,) [Z —logp(yi, =i |27, 0) +

i=1

2},2||0||2] - (19)

Observe that

Ep(z,:0.) [9(0|27)] = g(0]27),
and

1
Buesa) | 52101 = oal01°

Using the linearity of expectation, the above observa-
tions, and we can re-write as

m
1
> [9(0129) = (F (61, i, 3:),0)] + ﬁll9\|2~ (20)
i=1
In the mazimization step of EM, one computes the
value of 6 which maximizes the above expectation.
First order optimality conditions for are found by



taking derivatives with respect to 6 and setting them
to 0. This is equivalent to solving

1
ZE(97$’i7y) - F(Qtumiuyi) + ?9 = 07

which is exactly the same as . This is not sur-
prising, since the CCP is a generalization of the EM
algorithm [I6]. Things are more interesting in the case
of Support Vector Machine classification.

3.3 Application to SV Classification

It is clear that satisfies the conditions of Theo-
rem (1} simply define

F0(6.6) = 51607 + > & (212)
=1
fi(0,€) =1 =& + maxg(0]27, ) (21b)
J#Yi
90(0) = 0 and g;(6) = g(0l27, v:)- (21c)

We also set ¢; = 0 for all 4 and write
T1{g:, 0:1(0) = gi(01) + (0 — 64, F' (01, x5, 3)) -
If we define
di =1=& — gi(6e) + (0, F (01, x5, 11)) ,

then each iteration Algorithm [I] requires solving the
following optimization problem:

D R
min o 10| + ;g (22a)
st (F(O,24,9:),0) — Igé&xg(ﬂx?,gj) >d; (22b)
Y7FYi
& > 0. (22¢)

Since this is a convex optimization problem, standard
Quadratic Programming (QP) packages can be used to
solve it. Basically, what happens is that the expected
value of ®(z,y) with respect to the unknown part of
x is used for classification. This is theoretical justifi-
cation for the sometimes-used heuristic of estimating
the values of the missing parameters and subsequently
performing classification based on them. The main
difference to this simple heuristic is that the margin of
classification is defined as the difference between pairs
of log-partition functions. This means that the condi-
tional expectations depend on the (z%,y) pair rather
than on z* alone.

4 Implementation

To make the above algorithms feasible in practice, sev-
eral technical problems need to be overcome: it may

not be possible to compute the log-partition function
or its derivatives exactly. The solutions cease to be
sparse, as they are given by linear combinations of con-
ditional expectations. Sometimes, the dimensionality
of the space might be so large that high dimensional
integration techniques may need to be employed. In
this section we discuss a few ideas which can be used
to overcome the above problems.

The Representer Theorem: It follows from the
generalized representer theorem [I1] that the solution
0* of both Support Vector Machine and Gaussian Pro-
cess classification satisfies

0" € span{®(z7, x;',y) where z,y are free}. (23)

This means that the cardinality of the basis for 6 is typ-
ically very large, sometimes even infinite. This might
happen, for instance, when either the input space X
or the label space ) have large dimensionality. This is
clearly not desirable and we need an alternative. This
is given in the form of an incomplete Cholesky factor-
ization of the kernel matrix, either by sparse greedy
approximation [I3] or by positive diagonal pivoting [2].
For practical purposes we used the latter based on the
kernel matrix arising from complete data pairs. The
advantage is that instead of conditional expectations of
®(x,y), which could be infinite dimensional, we now
only need to compute conditional expectations over
kernel values, that is

(Bgu [0(x,y)[2% 0], ©(2',y")) = Bogu [k((2, 1), (', y"))[2°].
(24)

Likewise, second derivatives with respect to 8 are given
by covariances over kernel values.

In other words, instead of allowing the solution to lie
in a possibly infinite dimensional space we constraint
it to lie in a subspace spanned by the fully observed
variables. This can lead to significant computational
advantages. Of course, the downside is that the so-
lution that we obtain might be sub-optimal since we
are enforcing our constraint satisfaction conditions on
only a subspace.

The log-partition function: The second issue, and
arguably a very thorny one, is that one needs to be
able to compute the value of the log-partition function
for both the conditional as well as the unconditional
densities. If suppose the number of missing variables
is very small, and furthermore, if they can take only
a small number of discrete values, then brute force
computation of the conditional log-partition function
is feasible.

In all other cases, we need to resort to methods for
numerical quadrature, such as those discussed in [§].



The key difference to before is that now we will not
even be able to reach a local optimum exactly but only
up to the level of precision provided by the numerical
integration method. A simple approximation is to use
a Monte-Carlo estimate over the domain of missing
variables instead of an exact integral. In other words,
to compute

Eya,y:0)[k((2,y), (@', y"))]=°],

we use the approximation

Zz“eXu k((xv y)ﬂ (:I"/a y/))€<¢.(z’y)’0>
> puexu €(2@)0)

where z% is drawn uniformly from the domain of ob-
servations.

Stochastic Gradient Descent Finally, instead of
performing a new Taylor expansion at every new step,
we may also perform stochastic gradient descent on
the objective function itself. This may be preferable
whenever the constrained optimization problem be-
comes highly nontrivial. Essentially, in this case we
only perform conditional expectations for the particu-
lar observation at hand. Standard considerations for
stochastic gradient descent methods apply [5].

5 Experiments

We use the well known US Postal Service (USPS)
dataset. It contains 9298 handwritten digits (7291 for
training and 2007 for testing), collected from mail en-
velopes in Buffalo [7]. Upto 25% of pixels (64 pixels
out of 256) from each data point in the training set
were randomly selected and their values were erased.
A Sparse Greedy matrix approximation using a maxi-
mum of 1000 basis functions was used to approximate
the kernel matrix. We use the Gaussian kernel

_ 2
k($7xl) = eXp (H(IJ.’L‘) s

202

and tune the o parameter using cross validation. Reg-
ularization parameters previously reported in the lit-
erature [I0] were used for all our experiments. To es-
timate the integrals we used a Monte-Carlo sampling
technique using 50 configurations of missing data gen-
erated uniformly at random. We then used a block
Jacobi method in conjunction with the CCCP algo-
rithm in order to train a multi-class Gaussian Process.
We obtained the best error rate of 5.8%. Contrast this
with the best error rate of around 4.0% reported for the
Gaussian kernel on the same dataset [10]. We noticed
that estimating the integrals by using many samples
decreases the error rate but takes significantly longer
amounts of time to compute and converge.

In the second experiment, we replaced the missing val-
ues by their mean values from other observed data.
This is commonly known as mean imputation [3]. We
obtain the best error rate of 6.08% for this procedure.

As can be see the error rates achieved by our method
is marginally better than that obtained by mean im-
putation. This phenomenon was also observed by [3].
We believe that more sophisticated numerical integra-
tion techniques to estimate integrals will significantly
improve the performance of our algorithm.

6 Discussion and Outlook

In this paper, we presented a principled method for
dealing with missing data using exponential families
in feature space. We outlined methods to deal with
missing training data as well as partially observed la-
bels. Transduction can be viewed as a special case of
our framework. We then showed how Gaussian Pro-
cesses and Support Vector Machines can be extended
to missing data by using our framework. In order to
solve the non-convex optimization problem that arises
we presented a generalization of the Convex Concave
Procedure to incorporate non-convex constraints. We
also discussed a simple proof of convergence for our
algorithm. Preliminary experimental results are en-
couraging.

Clearly, computation of the log-partition function is
the most expensive step in our algorithm. Faster ap-
proximation algorithms viz. Quasi Monte Carlo sam-
pling methods need to be explored for computing the
log-partition function. Extending our results to graph-
ical models and other similar density estimators re-
mains the focus of future research.
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