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Abstract 

We propose a constraint-based algorithm for 
Bayesian network structure learning called 
recursive autonomy identification (RAI). The 
RAI algorithm learns the structure by recursive 
application of conditional independence (CI) 
tests of increasing orders, edge direction and 
structure decomposition into autonomous sub-
structures. In comparison to other constraint-
based algorithms d-separating structures and then 
directing the resulted undirected graph, the RAI 
algorithm combines the two processes from the 
outset and along the procedure. Learning using 
the RAI algorithm renders smaller condition sets 
thus requires a smaller number of high order CI 
tests. This reduces complexity and run-time as 
well as increases accuracy since diminishing the 
curse-of-dimensionality. When evaluated on 
synthetic and "real-world" databases as well as 
the ALARM network, the RAI algorithm shows 
better structural correctness, run-time reduction 
along with accuracy improvement compared to 
popular constraint-based structure learning 
algorithms. Accuracy improvement is also 
demonstrated when compared to a common 
search-and-score structure learning algorithm. 
 

1 INTRODUCTION 
Most algorithms for Bayesian network (BN) structure 
learning are either search-and-score based [Heckerman, 
1995; Friedman et al., 1997] in which the structure 
achieving the highest score given the data is pursued or 
constraint-based in which the structure is learned from 
constraints derived from statistical tests of independence 

between variables combined with causality inference rules 
[Pearl, 2000; Spirtes et al., 2000]. The main problem of 
constraint-based algorithms is their inefficiency and 
inaccuracy (due to the curse-of-dimensionality) in 
performing conditional independence (CI) tests for large 
condition sets. Most constraint-based algorithms, such as 
Inductive Causation (IC) [Pearl, 2000], PC [Spirtes et al., 
2000] and Three Phase Dependency Analysis (TPDA), 
[Cheng et al., 1997], construct a directed acyclic graph 
(DAG) in two consecutive stages. First is learning 
associations between variables for constructing an 
undirected structure. This requires an exponentially 
growing number of CI tests with the number of nodes, 
which can be reduced to polynomial by fixing the number 
of parents (PC algorithm) or using the values computed in 
the CI test and some strong assumptions (TPDA 
algorithm). These assumptions however may not be valid 
in all situations. Another flaw of the TPDA algorithm is 
ignoring the curse-of-dimensionality in CI tests by not 
limiting the size of the condition set. The second stage in 
most constraint-based algorithms is causality inference 
performed in two consecutive steps: finding and directing 
V-structures and inductively directing additional edges 
[Pearl, 2000]. Causality inference, and especially the 
induction step, is unstable, i.e., small errors in the input to 
the stage yield large errors at its output [Spirtes et al., 
2000]. Thus, the algorithms increase stability by 
separating the two stages trying in the first stage to 
minimize erroneous decisions about d-separation caused 
by invalid threshold selection or poor estimation due to 
the curse-of-dimensionality. 

We propose a constraint-based algorithm that recursively 
tests conditional independencies with condition sets of 
increasing orders, directs edges for each order and 
identifies autonomous sub-structures complying with the 
Markov property (i.e., the sub-structure includes all node 
parents). By considering directed rather than undirected 



edges, the RAI avoids unnecessary CI tests and performs 
tests using smaller condition sets. Repeated for 
autonomies decomposed recursively from the graph both 
mechanisms reduce computational and time complexities, 
database queries and errors of subsequent iterations. 
Using smaller condition sets, the RAI algorithm also 
improves accuracy since diminishing the curse-of-
dimensionality. After providing some preliminaries in 
Section 2 we introduce the RAI algorithm in Section 3 
and present its experimental evaluation in Section 4 
before concluding the paper in Section 5. 

2 PRELIMINARIES 
A BN B(G,Θ) consists of a structure (graph) G and a set 
of probabilities Θ quantifying the graph. G(V,E) consists 
of V, a set of nodes representing domain variables, and E 
a set of edges connecting the nodes. Pap(X,G), Adj(X,G) 
and Ch(X,G) are respectively the sets of potential parents, 
adjacent nodes and children of node X in a partially 
directed graph G, Pap(X,G)=Adj(X,G)\Ch(X,G). 
Similarly, Pa(X,G) and Desc(X,G) are the sets of parents 
and descendants of X in G. We indicate that X and Y are 
independent given a set of nodes S using X || Y|S and 
make use of the notion of d-separation [Pearl, 2000]. We 
also define d-separation resolution evaluating d-
separation for different values of the maximal number of 
nodes in the condition set, an exogenous cause to a graph 
and an autonomous sub-structure. 

Definition 1: The d-separation resolution between any 
pair of non-adjacent nodes is the size of the smallest 
condition set that d-separates the two nodes. 

Definition 2: The d-separation resolution of a graph is the 
highest d-separation resolution in the graph. 

Definition 3: Y is an exogenous cause to G(V,E) if Y∉V 
and ∀X∈V, Y∈Pa(X) or Y∉Adj(X) [Pearl, 2000].  

Definition 4: A sub-structure GA(VA,EA) in G(V,E) s.t 
VA⊂V, EA⊂E is autonomous given a set of exogenous 
nodes Vex to GA  if ∀X∈VA, Pa(X,G)⊂{VA∪Vex}. If Vex 
is empty, we say the sub-structure is autonomous. 

We define sub-structure autonomy in the sense that the 
sub-structure holds the Markov property for its nodes. 
Given a structure G, any two non-adjacent nodes in an 
autonomous sub-structure GA are d-separated given nodes 
either included in the sub-structure or exogenous causes 
to it. This notion is elaborated in Section 3.3. 

3 RECURSIVE AUTONOMY 
IDENTIFICATION 

Starting from a complete graph and proceeding from low 
to high graph d-separation resolution, the RAI algorithm 
uncovers the correct pattern (i.e., a family of structures 
Markov equivalent to the true underlying structure) by 
recursive (1) test of CI between nodes and removal of 
edges related to independencies (thinning), (2) edge 
direction according to inferred causality rules and (3) 
graph decomposition into autonomous sub-structures. 

CI testing of order n between X and Y is performed by 
thresholding a criterion, such as the χ2 goodness of fit 
[Spirtes et al., 2000] or conditional mutual information 
[Cheng et al., 1997]. The criterion measures dependence 
conditioned on a set of n nodes from the parents of X or Y 
determined by the Markov property [Pearl, 2000], e.g., if 
X is directed into Y only Y's parents are included in the 
set. 

Directing edges is conducted according to causality rules 
[Pearl, 2000] by identifying intransitive triplets of nodes 
(V-structures), i.e., non-adjacent parents having a 
common child, directing the relevant edges, and applying 
additional rules to further direct edges until no more 
edges can be directed (the inductive step). 

Decomposition into autonomous sub-structures reveals 
the structure hierarchy and allows performing a fewer CI 
tests conditioned on a large number of potential parents 
thereby reducing complexity. The RAI algorithm 
identifies ancestor and descendant sub-structures, the 
latter are autonomous given nodes of the former. 

3.1 THE RAI ALGORITHM 

Iteration of the RAI algorithm starts with knowledge 
produced in the previous iteration and the current d-
separation resolution, n. Previous knowledge includes 
Gstart, a structure having d-separation resolution of n-1 and 
Gex, a set of structures having each possible exogenous 
causes to Gstart. In the first iteration, n = 0, Gstart(V,E) is a 
complete graph and Gex=∅. 

Given a structure Gstart having d-separation resolution n-1, 
the RAI algorithm seeks independencies between adjacent 
nodes conditioned on sets of size n, resulting in a 
structure having d-separation resolution of n. After 
directing edges, the algorithm decomposes the structure 
into ancestor and descendent autonomous sub-structures 
in order to reduce complexity of successive stages. A 
descendant sub-structure is established by identifying the 
lowest topological order nodes (either a single node or a 



 
 

Figure 1: The RAI algorithm 

 

several nodes having the same lowest order). This 
structure is autonomous given ancestor sub-structures 
composed of nodes of higher order. In order to consider a 
smaller number of parents for each node of the 
descendent sub-structure, the algorithm recursively learns 
ancestor sub-structures and only then their descendant 
sub-structure. Note that this latter structure may consist of 
a several non-connected sub-structures. Figures 1-3 show 
respectively the RAI algorithm, a manifesting example 
and the algorithm execution order for this example. 
Figure 2a shows the true underlying structure. Initially, 
Gstart is the complete graph and Gex is empty so stage A is 
skipped. At stage B1, any pair of nodes is CI tested given 
an empty condition set (marginal independence) yielding 
the removal of the edges between node 1 and nodes 3, 4  

         
(a)                           (b)                           (c) 

         
(d)                           (e)                           (f) 

     
(g)                           (h)  

 
Figure 2: Learning an example structure. a) The true 

underlying structure and structures learned by the RAI 
algorithm in stages (see Figure 1) b) B1, c) B2, d) B4, e) 

C, f) D and A1, g) D and A2 and h) D and B1 (the 
resulting structure) 

 
 

 
 

Figure 3: The execution order of the RAI algorithm for 
the structure of Figure 2. Recursive calls of stages C and 

D are marked with a double and single arrow, 
respectively. 

RAI(0,G({X1…X7}),{}) 

RAI(1,G({X3,X4,X5}),{})

RAI(1,G({X2,X6,X7}),G({X1,X3,X4,X5}))

1
3 

7

RAI(2,G({X2}),G({X1,X4}))

RAI(2,G({X6,X7}),G({X2})) 

5 

6 

RAI(2,G({X3,X4,X5}),{})

4 

2 
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Main function Gout = RAI(n,Gstart,Gex) 

Exit condition 
If all nodes in Gstart have less than n-1 
potential parents exit. 

A. Thinning the link between Gex and Gstart and 
directing Gstart 

1. For every node Y in Gstart and its parent X in Gex, 
if ∃S⊂{Pap(Y,Gex)\X∪Pap(Y,Gstart)} and |S|=n s.t 
X || Y|S, then remove the edge between X and Y. 

2. Direct the edges using causality inference rules. 

B. Thinning, directing and decomposing Gstart. 
1. For every node Y and its potential parent X, both 

in Gstart, if ∃S⊂{Pap(Y,Gex)∪Pap(Y,Gstart)\X}and 
|S|=n s.t X || Y|S, then remove the edge between 
X and Y. 

2. Direct the edges using causality inference rules. 
3. Group the nodes having the lowest topological 

order into a descendant sub-structure GD. 
4. Remove GD from Gstart temporarily, and define 

the resulting unconnected structures as ancestor 
sub-structures GA1,…, GAk. 

C. Ancestor sub-structure decomposition 
for i = 1 to k, call RAI(n+1,GAi,Gex) 

D. Descendant sub-structure decomposition 
1. Define GD_ex={GA1,…,GAk,Gex} as the exogenous 

structure to GD. 
2. Call RAI(n+1,GD,GD_ex) 

RAI(1,G({X1}),{}) 

11 



and 5 (Figure 2b). The causal relations inferred at stage 
B2 are shown in Figure 2c. The nodes having the lowest 
topological order (2, 6, 7) are grouped into a descendant 
sub-structure GD (stage B3) while the remaining nodes 
form two unconnected ancestor sub-structure, GA1 and 
GA2 (stage B4) (Figure 2d). At stage C the algorithm is 
called recursively for each of the ancestor sub-structures 
with n=1, Gstart=GAi and Gex=∅. Since sub-structure GA1 
contains a single node, the exit condition for the structure 
is satisfied. While calling Gstart=GA2, stage A is skipped 
and stage B1 identifies that X4 || X5|X3 thus removes edge 
X4⎯X5. No causal relations are identified so the nodes 
have equal topological order and they are grouped to from 
a descendant sub-structure. The recursive call for this sub-
structure with n=2 is returned immediately since the exit 
condition is satisfied (Figure 2e). Moving to stage D, the 
RAI is called with n=1, Gstart=GD and Gex={GA1,GA2}. 
Then, in stage A1 relations (X1 || {X6,X7}|X2), (X4 || 
{X6,X7}|X2) and ({X3,X5} || {X2,X6,X7}|X4) are identified 
and the corresponding edges are removed (Figure 2f). At 
stage A2 node X2 is identified as a parent of X6 and X7 
(Figure 2g). Stage B1 identifies the relation (X2 || X7|X6) 
and stage B2 identifies X6 as a parent of X7 (Figure 2h). 
Further recursive calls are returned and the resulting 
partially directed structure represents a family of Markov 
equivalent structures of the true structure. 

3.2 MINIMALITY, STABILITY & COMPLEXITY 

Minimality A structure having a higher d-separation 
resolution entails a fewer dependencies and thus is 
simpler and preferred to a structure having a lower d-
separation resolution [Pearl, 2000]. By increasing the 
resolution, the RAI algorithm moves from a complete 
structure having maximal dependency relations between 
variables to structures having less (or equal) dependencies 
than previous structures ending in a structure having no 
edges between conditionally independent nodes, i.e., a 
minimal structure. 

Stability is measured by the number of errors in the output 
structure due to CI test errors, which are the only source 
of errors. CI test errors are the result of unnecessary large 
condition set leading to the curse-of-dimensionality or 
choosing an inaccurate condition set due to partial 
information (e.g., undirected edges). Although as a 
recursive algorithm the RAI might be unstable, errors are 
practically less likely to occur since the algorithm utilizes 
more information (e.g., edge direction and graph 
decomposition) from previous iterations to choose 
smaller, informative condition sets for performing the 
tests. 

Complexity CI tests are the major contribution to 
complexity (run-time) [Cheng and Greiner, 1999]. In the 
worst case, the RAI algorithm will not direct any edges 
nor decompose the structure thus identify the entire 
structure as a descendant sub-structure calling stage D 
iteratively while skipping most other stages. Then, the 
execution of the algorithm will be similar to that of the 
PC algorithm and the complexity will be bounded by that 
of the PC algorithm. Given the maximal number of 
possible parents k and the number of nodes n, the number 
of CI tests is bounded by [Spirtes et al., 2000] 
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This worst case scenario rarely occurs in “real-world” 
applications requiring structures having colliders. 

3.3 CORRECTNESS 

Proposition: If the input data to the RAI algorithm is 
faithful to a DAG, G, having any d-separation resolution, 
then it yields the correct pattern, Gout. 

Proof: (by induction, ignoring notions common to the 
RAI and PC algorithms which are proved in [Spirtes et 
al., 2000])  

Base case: If the input data to the RAI algorithm is 
faithful to a DAG with d-separation resolution 0, then it 
yields the correct pattern Gout.  

Since Gstart is a complete graph, the algorithm tests in 
stage B marginal independence between pairs of nodes 
and then direct edges. Thus, the resulting structure 
contains only edges between marginally dependent nodes, 
therefore having d-separation resolution of 0. From the 
decomposition stages, B3 and B4, based on the 
topological order identified from the partially directed 
structure, it follows that every edge from a node X in an 
ancestor sub-structure to a node Z in the descendant sub-
structure is directed, X→Z. Also, there is no edge 
connecting one ancestor sub-structure to another ancestor 
sub-structure. Thus, every ancestor sub-structure contains 
all the potential parents of its nodes, i.e., it is autonomous.  

Lemma 1: If the given data entails X || Y|S and X,Y are 
members of an autonomous sub-structure GA(VA,EA), 
then ∃S’ such that S’⊂VA and X || Y|S’. 

Lemma 2: In a DAG, if X and Y are non-adjacent and X 
is not a descendant of Y then X and Y are d-separated 
given Pa(Y) (proved in [Spirtes et al., 2000]).  



An autonomous sub-structure contains all potential 
parents (either sub-structure nodes or exogenous causes) 
of each of its nodes. Thus, from Lemma 2, if X and Y are 
independent given a set of nodes (i.e., d-separated in the 
true underlying graph), then they are d-separated given 
PaP(X) or PaP(Y) which are contained in the autonomous 
sub-structure. Thus, every ancestor sub-structure can be 
processed independently by recursive calls of the 
algorithm. The recursive call of the descendant sub-
structure regards the ancestor sub-structure nodes as 
exogenous causes. The data does not entail any higher 
order conditional independencies and no more edges are 
removed. 

Inductive case: Suppose that the RAI algorithm yields the 
correct pattern given data faithful to a DAG having d-
separation resolution n. Then, given data faithful to a 
DAG having d-separation resolution n+1 the RAI 
algorithm yields the correct pattern. 

After achieving d-separation resolution of n in an 
autonomous sub-structure, G(n), a recursive call with n+1 
is made. The exit condition is not satisfied in case an edge 
exists in G(n) and does not exist in the true structure Gt. 
Suppose an edge EXY=(X→Y) exists, such that EXY∈G(n) 
and EXY∉Gt, then the smallest condition set required to 
identify the independency between the nodes is SXY, such 
that |SXY| ≥ n+1. Thus, it follows from Lemma 2 that 
either |Pa(X)| ≥ n+1 or |Pa(Y)|≥n+1 and the exit condition 
is not satisfied. Every pair of connected nodes is tested for 
independence in stage B1 using condition sets of size n+1 
and the corresponding edges are removed resulting in a 
sub-structure having d-separation resolution of n+1. 

The correctness of edge directing is discussed in [Pearl, 
2000; Spirtes et al., 2000]. 

4 EXPERIMENTS AND RESULTS 
The RAI algorithm was experimentally compared to the 
PC and TPDA algorithms, two popular constraint-based 
structure learning algorithms reported frequently as 
having good performance [Ramsey et al., 2002]. For 
simplicity, no speeding-up heuristic techniques [Spirtes et 
al., 2000] were applied to either algorithm, and the RAI 
algorithm employed only V-structure identification 
deferring the inductive step after forming the structure. 

The complexity and prediction accuracy of the RAI 
algorithm were compared to those of the PC and TPDA 
algorithms using a synthetic problem and fifteen “real-
world” databases of the UCI Repository [Murphy and 
Aha, 1994]. Interested mainly in classification, the  
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Figure 4: (a) The number of CI tests required by the RAI 
and PC algorithms for increasing orders averaged over all 
possible structures having five nodes. (b) CI test reduction 

by the RAI algorithm compared to the PC algorithm 
 

prediction accuracy is preferred over the likelihood in 
evaluating performance, as the likelihood ignores the 
importance of the class variable [Friedman et al., 1997]. 
Structural correctness was evaluated in recovering the 
ALARM network in comparison to the TPDA and PC 
algorithms. BN implementation was aided by the Bayes 
net toolbox (BNT) [Murphy, 2001] and BNT structure 
learning package [Leray and Francois, 2004]. 

4.1 A SYNTHETIC PROBLEM 

All 29,281 possible structures having five nodes were 
learned by the PC and RAI algorithms. Since the true 
structure is known, the actual CI relationships could be 
inputted to the algorithms. Figure 4a shows the 
complexity, evaluated using the averaged number of CI 
tests over all possible structures, of the algorithms for 
increasing orders (condition sets). Figure 4b illustrates the 
percentage of CI tests reduced by the RAI algorithm in 
comparison to the PC algorithm. 

4.2 “REAL-WORLD” DATA 

A several databases of the UCI Repository were 
employed in order to evaluate prediction accuracy. When 
needed, continuous variables were discretized using the  



Table 1. The average number (percentage) of CI tests 
reduced by the RAI algorithm compared to the PC 

algorithm for different orders 
 
CI test order Database 

0 1 2 3 4 
shuttle (s) 0 

(0) 
1.4 

(0.7) 
95.8 

(43.8) 
117.6 
(49.3) 

83.6 
(56.0) 

car 0 
(0) 

16 
(100) 

11.2 
(100) 

3.2 
(100) 

 

corral 0 
(0) 

22.4 
(100) 

26 
(100) 

3.6 
(100) 

 

mofn 
3,7,10 

0 
(0) 

17 
(100) 

4 
(100) 

  

tic-tac-toe 0 
(0) 

53.2 
(27.1) 

56.6 
(48.6) 

1.8 
(51.4) 

 

led7 0 
(0) 

46.2 
(45.7) 

105 
(100) 

140 
(100) 

105 
(100) 

breast 0 
(0) 

107.2 
(54.8) 

35 
(99.1) 

  

vote 0 
(0) 

24.2 
(21.9) 

17.2 
(98.1) 

6.4 
(100) 

1 
(100) 

flare C 0 
(0) 

16 
(39.6) 

3 
(100) 

  

wine 0 
(0) 

25.8 
(41.0) 

44.2 
(67.6) 

40.6 
(82.4) 

19 
(96.7) 

cmc 0 
(0) 

10.2 
(10.9) 

8 
(32.5) 

  

crx 0 
(0) 

8.8 
(49.6) 

   

zoo 0 
(0) 

82 
(27.8) 

365.8 
(29.6) 

1033.4 
(27.7) 

1928.6 
(25.6) 

australian 0 
(0) 

3.8 
(34.4) 

   

iris 0 
(0) 

2 
(40) 

   

 

MLC++ library [Kohavi et al., 1994]. Variable A14 of the 
“shuttle-small (s)” database was ignored by the 
discretization function of MLC++ and thus omitted from 
the experiments. “flare1” and “flare2” were merged to 
form the “flare C” database where the class node is the 
number of “C-class” flares. All databases were analyzed 
using a CV5 experiment except the large “shuttle” and 
“mofn 3-7-10” databases which were analyzed using a 
hold-out experiment. CI tests were carried out using the 
χ2 test [Spirtes et al., 2000] with thresholds chosen for 
each algorithm and database in order to maximize the 
prediction accuracy on a validation set selected from the 
training set. If a several thresholds were suitable, the  

Table 2. Mean (std) prediction accuracy of the RAI 
algorithm in comparison to the PC algorithm and “other” 

classifiers reported in [Friedman et al., 1997] (F) and 
[Cheng and Greiner, 1999] (TPDA algorithm) (C), as well 
as the cut (%) of CI test run-time using the RAI algorithm 

in comparison to the PC algorithm 
 

Database run-
time 

cut (%) 

PC 
accuracy 

(%) 

RAI 
accuracy

(%) 

other 

shuttle (s) 
 

38.94 98.40 99.22 99.17(F) 

car 91.10 85.07 
(1.83) 

92.94 
(1.06) 

86.11(C) 

corral 87.94 84.53 
(15.45) 

98.52 
(3.31) 

97.60(F) 

mofn 
3,7,10 

67.70 81.45 93.16 85.94(F) 

tic-tac-
toe  

36.52 74.74 
(1.48) 

75.57 
(1.93) 

 

led7 91.74 73.31 
(1.80) 

73.59 
(1.56) 

 

breast 71.87 95.46 
(2.04) 

96.49 
(1.61) 

96.92(F) 

vote 46.06 95.64 
(1.87) 

95.87 
(1.71) 

94.94(F) 
95.17(C) 

flare C 20.38 84.30 
(2.54) 

84.30 
(2.54) 

82.74(F) 
82.27(C) 

wine 29.11 85.44 
(7.79) 

87.07 
(5.88) 

 

cmc 14.22 50.92 
(2.33) 

51.12 
(3.16) 

 

crx 25.25 86.38 
(2.63) 

86.38 
(2.63) 

85.60(F) 

zoo 13.63 88.95 
(8.79) 

88.95 
(8.79) 

 

australian 6.05 85.51 
(0.52) 

85.51 
(0.52) 

86.23(F) 

iris 19.10 96.00 
(4.35) 

93.33 
(2.36) 

94.00(F) 

 

chosen threshold was that leading to the fewest CI tests. 
Parameter learning was performed using sequential 
Bayesian updating with Dirichlet priors of unit hyper-
parameters [Heckerman, 1995]. 

Complexity was measured by the number of CI tests 
employed and the corresponding run-time. Table 1 shows 
the average number and percentage of CI tests reduced by 
the RAI algorithm compared to the PC algorithm for 



different orders. A 100% cut in CI tests for a specific 
order means that the RAI does not need any CI tests for 
this order. Empty cells mean that no CI tests of this order 
are required. Both Table 1 and Table 2, depicting the cut 
in run-time due to the RAI algorithm, demonstrate that the 
RAI algorithm outperforms the PC algorithm in all cases. 

Prediction Accuracies of the RAI and PC algorithms for 
the experimented databases are summarized in Table 2. 
On ten of the fifteen databases the RAI algorithm 
improves accuracy on the PC algorithm, on four keeps 
accuracy intact and on the remaining “iris” database 
deteriorates accuracy. Examination of the “iris” database 
reveals discrepancy between the results of CI tests of 
orders 0 and 1 violating the Markov property. Three 
nodes are found marginally dependent on each other 
whereas nodes of each pair of this triplet are found 
independent given the third node. The prediction accuracy 
is also compared in Table 2 to that of the TPDA algorithm 
[Cheng and Greiner, 1999] and a BN learned by a search-
and-score method using the minimum description length 
criterion [Friedman et al., 1997]. 

4.3 LEARNING THE ALARM NETWORK 

Recovering the correct structure was evaluated using the 
ALARM network [Beinlich et al., 1989], which is widely 
accepted as a benchmark for evaluating structure learning 
algorithms. The RAI algorithm was compared to the PC 
and TPDA (PowerConstructor [Cheng, 1998]) algorithms 
using ten randomly generated databases each containing 
10,000 cases. Since the TPDA algorithm had used the 
conditional mutual information CI test, we employed this 
test also here. For comparison, we selected the TPDA 
threshold of 0.003 [Cheng et al., 1997] for testing also the 
RAI algorithm and a threshold of 0.002 for the PC 
algorithm providing better accuracy for this algorithm 
than using a threshold of 0.003. 

Structural correctness for the algorithms was evaluated 
using two types of errors due to extra edges (EE; 
commission) and missing edges (ME; omission) (Table 
3). The PC and RAI algorithms achieved the smallest 
errors of extra and missing edges, respectively. The total 
structural error (Table 4) accounting for both errors was 
evaluated using 

2 2
TError EE ME= + . 

The RAI algorithm yielded structures with the smallest 
total structural error of all algorithms which was validated 
using a t-test with 1% significance level. Others structural 
errors (e.g., edge reversal) were not recorded though we  

Table 3. Extra edge (EE) and missing edge (ME) errors 
(%) when learning the ALARM network in 10 trials using 

the TPDA, PC and RAI algorithms 
 

TPDA PC RAI Trial 
EE ME EE ME EE ME 

1 0.48 8.70 0.16 2.17 0.97 0 
2 0.32 4.35 0 6.52 0.65 2.17 
3 0.32 4.35 0 4.35 0.65 2.17 
4 0.32 6.52 0.16 4.35 0.32 0 
5 0.48 8.70 0 2.17 0.65 0 
6 0.48 8.70 0.16 4.35 0.48 0 
7 0.48 8.70 0.32 0 0.65 0 
8 0.16 2.17 0.16 2.17 0.81 2.17 
9 0.16 2.17 0.16 4.35 0.81 2.17 

10 0.48 8.70 0.32 4.35 0.65 0 
mean 
(std) 

0.37 
(0.13) 

6.30 
(2.80) 

0.15 
(0.12) 

3.48 
(1.83) 

0.66 
(0.18) 

0.87 
(1.12) 

 
 

Table 4. The total structural error (%) in 10 trials of the 
ALARM network learned using the TPDA, PC and RAI 

algorithms 
 

Trial TPDA PC RAI 
1 8.71 2.18 0.97 
2 4.36 6.52 2.27 
3 4.36 4.35 2.27 
4 6.53 4.35 0.32 
5 8.71 2.17 0.65 
6 8.71 4.35 0.48 
7 8.71 0.32 0.65 
8 2.18 2.17 2.32 
9 2.18 4.35 2.32 

10 8.71 4.36 0.65 
mean 
(std) 

6.32 
(2.80) 

3.51 
(1.77) 

1.29 
(0.88) 

 

expect the RAI algorithm to dominate both algorithms 
due to its enhanced mechanism of directing edges. 

Complexity The average reduction in CI tests achieved by 
the RAI algorithm compared to the PC algorithm for the 
ALARM network is presented in Figure 5. The RAI 
algorithm avoids completely the use of CI tests of order 4 
and 5 and almost completely CI tests of order 3, and it 
reduces the use of CI tests of order 2 by more than 83%. 
However, there is almost no reduction in CI tests of order 
1 which are most of the tests. The total CI test run-time  



 
 

Figure 5: Average percentage (number) of CI tests 
reduced due to the RAI algorithm compared to the PC 

algorithm for increasing orders and the ALARM network 
 

reduced by the RAI algorithm compared to the PC 
algorithm is 38%. 

5 DISCUSSION 
The performance of constraint-based algorithms of BN 
structure learning depends on the size of the condition set 
used for testing conditional independence. The larger the 
condition set is, the more CI tests (especially of high 
order) have to be performed and the less is their accuracy.  

We propose the constraint-based RAI algorithm that 
learns BN structures recursively by performing 1) CI tests 
of increasing orders, along with 2) directing edges 
employing causality inference rules and 3) decomposing 
the structure into autonomous sub-structures. These 
mechanisms provide smaller condition sets enabling the 
performance of fewer CI tests of higher order thus 
reducing the algorithm run-time and increasing its 
accuracy. Other constraint-based algorithms directing 
edges after accomplishing the undirected graph using all 
orders, rather than continuously through learning, are 
expensive and more sensitive to errors accumulated along 
the procedure. 

We demonstrate on a synthetic problem, fifteen real-
world databases and the ALARM network that the RAI 
algorithm significantly reduces the number of CI tests 
required for structure learning and yields more accurate 

structures as well as higher prediction accuracy compared 
to other constraint-based algorithms. 

Acknowledgement 

This work was supported in part by the Paul Ivanier 
Center for Robotics and Production Management, Ben-
Gurion University, Beer-Sheva, Israel. 

References 

 Beinlich, I. A., Suermondt, H. J., Chavez, R. M. & 
Cooper, G. F. The ALARM monitoring system: A 
case study with two probabilistic inference techniques 
for belief networks. Second European Conf. on 
Artificial Intelligence in Medicine, pages 246-256, 
1989. 

Cheng, J. PowerConstructor system, 1998. 
http://www.cs.ualberta.ca/~jcheng/bnpc.htm. 

Cheng, J., Bell, D. & Liu, W. Learning Bayesian 
networks from data: an efficient approach based on 
information theory. Sixth ACM Int. Conf. on 
Information and Knowledge Management, pages 325-
331, 1997. 

Cheng, J. & Greiner, R. Comparing Bayesian network 
classifiers, Fifteenth Conf. on Uncertainty in Artificial 
Intelligence, pages 101-107, 1999. 

Friedman, N., Geiger, D. & Goldszmidt, M. Bayesian 
network classifiers. Machine Learning, 29:131-161, 
1997. 

Heckerman, D. A tutorial on learning with Bayesian 
networks. MS TR-95-06, March 1995. 

Kohavi, R., John, G., Long, R., Manley D. & Pfleger, K. 
MLC++: A machine learning library in C++, Sixth Int. 
Conf. on Tools with AI, pages 740-743, 1994. 

Leray, P. & Francois, O. BNT structure learning package: 
documentation and experiments. PSI TR, 2004. 

Murphy, K. Bayes net toolbox for Matlab. Computing 
Science & Statistics, 33, 2001. 

Murphy, P. M. & Aha, D. W. UCI Repository of machine 
learning databases, 1994. 
http://www.ics.uci.edu/~mlearn/MLRepository.html. 

Pearl, J. Causality: Models, Reasoning, and Inference. 
Cambridge. 2000. 

Ramsey, J., Gazis, P., Roush, T., Spirtes, P. & Glymour, 
C. Automated remote sensing with near infrared 
reflectance spectra: Carbonate recognition. Data 
Mining & Knowledge Discovery, pages 277-293, 
2002. 

Spirtes, P., Glymour, C. & Scheines, R. Causation, 
Prediction and Search, 2nd edition, MIT Press, 2000. 

 


